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A B S T R A C T

Skeletons are well-known descriptors that capture the geometry and topology of 2D
and 3D shapes. We leverage these properties by using surface skeletons to remove
noise from 3D shapes. For this, we extend an existing method that removes noise, but
keeps important (salient) corners for 2D shapes. Our method detects and removes large-
scale, complex, and dense multiscale noise patterns that contaminate virtually the entire
surface of a given 3D shape, while recovering its main (salient) edges and corners. Our
method can treat any (voxelized) 3D shapes and surface-noise types, is computationally
scalable, and has one easy-to-set parameter. We demonstrate the added-value of our
approach by comparing our results with several known 3D shape denoising methods.

c© 2020 Elsevier B.V. All rights reserved.

1. Introduction

High-resolution 3D models are widely used in a variety of
applications such as prototyping, computer-aided industrial de-
signs, games, and virtual reality systems. Such models in-
evitably have measurement noises from various sources, such
as scanning, discretization, or quantization [1, 2]. Similarly, 3D
shapes extracted from volume data (e.g. MRI or CT scans) often
contain significant noise, be it topological [3] or geometric [4],
that needs to be removed before further usage.

Denoising a 3D model while preserving its salient geomet-
ric details (features) – also called regularization – is hard. Side
effects can occur, such as shape distortion and feature blurring,
which reduces the quality of the model. Additive noises from
various sources, present at different scales, complicate the situ-
ation, as some noise may be wrongly considered a feature dur-
ing regularization. An effective regularization method should
remove noise, maintain features, and avoid side-effects.

Many feature-preserving denoising methods have been pro-
posed [5, 1, 6, 7, 8, 9, 10, 11, 12]. Such methods work well for
small- and single-scale noise. They usually separate noise (to
be removed) from features (to be kept) locally. More advanced
methods can remove noise occurring at different spatial scales
(multiscale noise). While multiscale denoising methods exist,

as discussed in Sec. 2.1, they are more complex and delicate to
set up. A second issue is that most feature-preserving denois-
ing methods work on mesh or point-cloud representations. Far
fewer methods exist for binary voxel volumes.

Surface skeletons capture the topology and geometry of
shapes at different scales [13]. They are effective in many con-
texts – shape segmentation [14], registration [15], retrieval [16],
and animation [17]. They have also been used for feature-
preserving denoising of 2D binary shapes [18, 19]. Although
surface skeletons of 3D binary voxel shapes can be easily
and efficiently computed [20, 21], they have not been used for
feature-preserving denoising of voxel shapes.

Given (1) the scarcity of feature-preserving denoising meth-
ods for voxel shapes, and (2) the demonstrated effectiveness of
3D surface skeletons to represent shapes in a multiscale way, we
focus on how we can address task (1) with techniques from (2)
for voxel shapes. To this end, we study the skeleton-based de-
noising of 2D binary shapes proposed in [19], identify its limita-
tions when applied to 3D binary shapes, and show how to over-
come these. We demonstrate our proposal on real-world binary
3D shapes corrupted by large amounts of multiscale, dense, and
high-amplitude surface noise. Results show that our method can
recover very well the underlying features (corners and edges)
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of the original 3D binary shapes. Our method can be applied
to any binary 3D shape corrupted by surface noise, is compu-
tationally scalable, and has only one simple-to-set parameter.
Our method is useful in cases where one wants to fully work in
a voxel setting when representing and denoising shapes, rather
than working with a boundary representation (meshes or point
clouds). Finally, we show that 3D surface skeletons are an ef-
fective tool for feature-preserving shape denoising – a task for
which these skeletons have not been used so far. Summarizing,
our contributions are as follows:

1. We show (to our knowledge, for the first time) how surface
skeletons can do feature-preserving shape denoising;

2. We treat feature-preserving denoising of shapes entirely in
a voxel setting;

3. We show how we can effectively handle the case of multi-
scale noise (of widely varying frequency and high spatial
amplitude).

This paper is structured as follows. Section 2 overviews related
work in shape denoising and skeletonization. Section 3 details
our method. Section 4 gives implementation details. Section 5
shows results on real-world shapes and compares them with
existing feature-preserving denoising methods. Section 6 dis-
cusses our method. Section 7 concludes the paper.

2. Background

2.1. Feature-preserving shape denoising

Many methods for feature-preserving denoising (fairing) of
3D shapes exist. Early methods use anisotropic geometric dif-
fusion [22, 23, 24, 25], building on earlier image-processing
methods [26] to 3D shapes. Many such methods use a saliency
map of the shape surface that assigns high values to important
features such as strong edges. The saliency map weighs a shape
deformation process to remove noise but keep features. For
example, Lange et a. [12] use directional and principal curva-
tures as well as the Weingarten map for the saliency map, and
use anisotropic geometric mean-curvature flow for their opti-
mization. Other saliency-based mapping methods exist [9, 27].
Diffusion-based methods [25, 28, 29, 30] preserve salient ge-
ometric features of the denoised surface and can be computed
efficiently [31]. However, such methods use first, second, or
even fourth-order derivatives [32] (moments, curvature, and its
second-order derivatives), which are local and can become un-
stable when a large amount of noise is present.

Other denoising methods use robust statistics or bilateral fil-
tering. They rely on a similarity measure that changes how
the optimization process depends on the value of the points,
thus being more robust to outliers. Hence, feature preserving
smoothing can be seen as estimating the surface in presence of
outliers. An important early work here is [5]. They use bilateral
filtering, where tangent planes based on filtered normals drive
the similarity measure. Oztireli et al. [11] use robust statistics
(M-estimators) to drive an implicit least-squares procedure that
has good edge-preserving qualities. This method performs well
with a low number of samples. Many other methods use robust
statistics or bilateral filters [10, 1, 33, 34, 35, 36]. Yet, such

methods rely on local point neighborhoods, so they cannot dif-
ferentiate globally important edges from local (possibly noisy)
geometric details. Also, such methods need a given finite-
kernel size of to estimate curvature. If the size is too small, one
gets noisy curvature estimates; if the size is too large, curva-
ture estimates are stable, but are localized in the filtered version
of the input shape (rather than the shape itself), which results in
poor localization of shape features. To address this issue, Hilde-
brandt and Polthier [37] formulate surface fairing as an opti-
mization where a surface fairness measure is minimized subject
to constraints, e.g., maximum distance to the input mesh.

Another class of fairing methods first smooth face normals
and then reconstruct the denoised surface [38, 39, 40]. Yagou
et al. use mean, median [39], and alpha-trimming [40] filters to
smooth the normal field.

Tools from mathematical morphology can also perform sur-
face fairing. For an implicit surface, level-set methods perform
mean curvature-flow smoothing [41]. This PDE-based method
is fast and has an automatic criterion to stop smoothing and
keep the denoised surface close to the input. Additionally, an
iterated median filter of the embedding (implicit) function is
equivalent to the mean curvature flow of the level sets [42, 43].
A morphological opening-closing filter smooths a (binary) sig-
nal similar to a median filter [44].

2.2. Denoising voxel vs polygon or point-cloud shapes
As Sec. 2.1 shows, most feature-preserving denoising meth-

ods use a boundary representation (b-rep) of shape, typically a
polygon mesh or point cloud. Only very few denoising methods
treat binary voxel representations (v-reps) of 3D shapes. This is
explainable since many applications use b-reps, which are more
compact to store and can represent fine details more efficiently
than v-reps. Also, b-reps offer a higher freedom for denoising,
as (1) points can be placed anywhere in R3, and (2) points can
be added and/or deleted to enforce local shape properties. In
contrast, v-reps densely sample R3 on a fixed-resolution grid, so
have far less freedom to represent small-scale details (and thus
also when denoising). This makes the creation of high-quality
denoising methods for v-reps (our goal in this paper) more chal-
lenging. Yet, binary v-reps have several advantages: They have
a simpler implementation; do not suffer from the problem of
missing or inconsistent data, such as holes in a point cloud or
meshes with inconsistently oriented, self-intersecting, or degen-
erated, triangles; and can trivially handle outlier samples, which
appear as small-scale voxel groups disconnected from the main
shape, by using largest connected-component filtering or mor-
phological opening.

2.3. Skeletonization
Notations. Let Ω ⊂ Rd be a compact shape, with boundary ∂Ω,
embedded in 2D (d = 2) or 3D (d = 3). Its distance transform
DTΩ : Rd → R+ is given by

DTΩ(x ∈ Rd) = min
y∈∂Ω
‖x − y‖. (1)

Using DTΩ, we can define the skeleton S Ω ⊂ Rd as

S Ω = {x ∈ Ω|∃(y1, y2) ∈ ∂Ω×∂Ω, y1 , y2, ‖y1−x‖ = ‖y2−x‖ = DTΩ(x)}
(2)
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Simply put, Eqn. 2 says that S Ω is the set of points inside
the shape Ω which are at a distance equal to their distance-
transform from at least two different points y1 and y2 on the
shape’s boundary ∂Ω. Even simpler put, S Ω is the locus of cen-
ters of maximally-inscribed balls in Ω [45]. The points yi are
called the feature points of skeleton point x [46], and are the
contact points with ∂Ω of the maximally-inscribed ball in Ω (of
radius DTΩ(x)) of center x. The set FTΩ(x) of all feature points
of a skeleton point x is called the feature transform [47] of x.
The pair (S Ω,DTΩ), called the medial axis transform (MAT) of
Ω, is a dual representation of the shape, i.e., allows one to ex-
actly reconstruct Ω as the union of balls centered at the skeletal
points x ∈ S Ω and having radii DTΩ(x).

Computing skeletons. Many methods exist for computing ap-
proximations of S Ω. Key to all such methods is a regulariza-
tion process that removes from S Ω so-called spurious branches,
caused by small-scale perturbations of the surface ∂Ω, due to
sampling and/or acquisition noise. Such methods define an im-
portance ρ : S Ω → R+ and next define the regularized skeleton
as S Ω = {x ∈ S Ω|ρ(x) ≥ τ} for a user-selected regularization pa-
rameter τ ≥ 0. For 2D shapes Ω ⊂ R2, ρ is commonly set to the
longest shortest-path distance δ along ∂Ω between all feature-
point pairs, i.e., ρ(x) = max(y1,y2)∈FTΩ(x) δ(y1, y2) [48, 49, 50].
This keeps in S Ω only skeletal points corresponding, via the
feature transform, to boundary details longer than τ units.

3D skeletons computed via Eqn. 2 or equivalents, also called
medial surfaces, have a considerably more complex struc-
ture than their 2D counterparts, so regularization is imperi-
ously needed to provide simple enough representations for
practical applications. Medial surfaces can be computed for
both boundary-representation (meshed) models and volumet-
ric (voxel) models by Voronoi and bisector methods, shrinking
ball methods, topological thinning, and distance-field methods,
see recent surveys thereof [20, 21]. Surface skeletons can be
regularized by generalizing the distance-between-feature points
metric for 2D skeletons to the shortest-path (geodesic) distance
along the surface ∂Ω between feature points [51, 52, 53, 50].
A similar metric ρ can be computed by the advection of
uniformly-spread mass from ∂Ω to S Ω and then along the
manifolds of S Ω towards its center [54]. Other regulariza-
tion metrics include divergence and moments of the distance
transform’s gradient ∇DTΩ [55, 56, 57] and discarding skeletal
points whose feature points have a circumradius larger than a
given threshold [58].

Skeleton-based shape denoising. Regularized skeletons open
new ways for shape denoising. If regularization removes the
endpoints of skeletal terminal manifolds in S Ω, then the MAT
(S Ω,DTΩ) of the regularized skeleton S Ω allows reconstructing
a simplified version Ω of Ω where all surface zones correspond-
ing to removed skeleton points are replaced by circle arcs (in
2D), respectively cylindrical and spherical caps (in 3D). Hence,
regularizing the skeleton by removing points corresponding to
noise-scale shape details directly eliminates such noise.

Not all regularization metrics perform equally well for the
above task. Local metrics (divergence, moment, or circumra-
dius) cannot distinguish between locally similar but globally

different shape configurations and may disconnect the skele-
ton during denoising [55, 56, 57, 58]. Global metrics like the
geodesic distance or mass-advection do not have this problem
as they monotonically increase from the skeleton boundary to-
wards its center [52, 53, 50, 54]. Yet, they have the separate
problem that they also remove salient shape features, such as
edges and/or corners, together with same-scale noise, much like
classical isotropic Laplacian filtering [59].

Salience metrics alleviate this problem by adding informa-
tion on important (salient) shape features into the regulariza-
tion. For 2D shapes, Tek and Kimia iteratively remove skeleton
branches using a saliency metric equal to the area-difference
between the smoothed shape Ω and the original shape Ω di-
vided by the skeleton branch length [60]. Bai et al. [61] prune
the skeleton by partitioning the boundary ∂Ω into segments by
discrete-curve evolution and removing branches corresponding
to less important segments. Liu et al. [62, 18] remove skeleton
branches based on a saliency metric including the reconstruc-
tion contribution (area difference between Ω and Ω) and the
length of the skeleton branch-part that is not contained in the
maximal sphere centered at the adjacent branch point. Yet, such
branch-pruning methods require a careful topological analysis
of the skeleton (detecting branches and their junctions) which
is very hard to generalize to the complex structure of 3D medial
surfaces, so are not readily applicable to 3D shapes.

A different salience metric [19] uses the ratio

σ(x) =
ρ(x)

DTΩ(x)
(3)

where ρ is the shortest-path importance metric in [49]. Con-
sider a noisy rectangle (Fig. 1a). For this shape, σ gradually
decreases along skeleton branches caused by noise details on
∂Ω but stays roughly constant along branches caused by salient
(important) corners (Fig. 1d and inset). Hence, we can discon-
nect the noise branches from the skeleton core – that is, the
skeleton excluding branches created by small-scale, noise, per-
turbations on ∂Ω [63] – by upper thresholding σ with a user-
defined value σ0 (Fig. 1e). The low-σ removed skeletal points
are the so-called skeleton ligatures [13], along which ρ stays
constant. Since σ stays high on branches caused by salient
features (corners), these branches are not pruned. Next, one
keeps the skeleton connected-component containing the largest
ρ value after the pruning pass (Fig. 1f). From this, a denoised
version Ω of the shape Ω, with salient corners preserved, is
computed as the union of balls of the core skeleton (Fig. 1f).
However, the importance ρ is low towards the end of both noise
and salient branches (Fig. 1b and inset). Hence, regularizing
S Ω by upper thresholding ρ prunes both branch types, so recon-
struction removes both noise and smooth corners (Fig. 1c).

3. Method

The skeleton-based method [19] described above effectively
removes even large-amplitude and multiscale boundary noise
from 2D shapes while keeping salient corners intact, is simple
to implement, and computationally efficient (linear in the num-
ber of foreground pixels in Ω). Yet, generalizing this method to
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Fig. 1: Salience skeleton smoothing method for 2D shapes [19].

3D shapes is not straightforward. We next identify three main
problems for the 3D case (see also Fig. 2):

(A) Noise near features. Consider the behavior of the saliency
σ (Eqn. 3) along a noise-induced skeleton branch (Fig. 1d in-
set): The four noise bumps are successfully removed as they are
far from the corner, so their ligature branches are long enough to
allow DTΩ to increase sufficiently to make σ to drop below the
user threshold σ0. However, if such noise bumps were closer
to the corner, their ligature branches would be too short to yield
σ < σ0. So, upper thresholding σ fails to remove noise close
to salient corners. Decreasing σ0 does not solve this problem,
as it also removes the tips of the skeleton branches caused by
salient corners, which is unwanted. The same problem appears
in 3D for noise close to shape edges or corners, which cannot
be removed by thresholding σ (Fig. 2a, last column).

(B) Noise crossing edges. Consider elongated noise that
crosses (intersects) a salient edge of a 3D shape. Figure 2b
(column 1) shows such an example – a cube where a box-like
bump was added across one edge. Figure 2b (column 2) shows
the skeleton S Ω colour-coded by the salience σ. We see that
the noise bump creates a skeletal sheet orthogonal to the cube’s
surface skeleton. Upper thresholding σ removes some, but not
all of the voxels on this sheet (Fig. 2b, column 3). Unlike in
the 2D case, thresholding does not fully disconnect the noise-
sheet from the rump skeleton. Hence, we cannot remove such
type of edge-crossing noise by the connected-components pro-
cedure outlined for the 2D case in Sec. 2.3.

(C) Distance transform ripples. Figure 2c shows a third and
last problem of the method in [19]. The input cube shape was
noised by adding a few simple Gaussian-like bumps (Fig. 2c,
column 1). These create several skeletal sheets (Fig. 2c, col-
umn 2). Thresholding the salience σ fully removes these sheets
(Fig. 2c, column 3). However, close to the junction points of the
removed sheets, the regularized skeleton exhibits several ‘rip-
ples’, as its surface is bent so as to be centered in the input
shape, following Eqn. 2. Reconstructing the smoothed shape
from this regularized skeleton next creates some subtle, but un-
wanted, undulations on the final surface (Fig. 2c, column 4).

We next propose several changes of 2D skeleton-based shape
smoothing [19] that address the three above problems.

3.1. Problem A: Removing noise close to shape features

As explained in Sec. 2.3, along a noise-induced skeleton
branch, the importance ρ first increases, then plateaus over the
range of ligature points. Hence, we propose to detect ligature
points by using the directional derivative of ρ along a vector
field v : S Ω → R3 that is tangent to the skeleton and points
towards the skeleton core, i.e., the quantity ∇ρ · v. In ligature
areas, ∇ρ · v, approaches zero, as ρ is locally constant there. In-
deed, by definition, ligature branches are sets of points that have
the same feature points yi on ∂Ω [13], hence the same shortest-
paths between yi, hence the same ρ (shortest-path length). Sep-
arately, the distance transform always increases as we advance
along a ligature branch towards the skeleton core [13]. Hence,
we propose to replace σ by

σ =
∇ρ · v
∇DTΩ · v

(4)

Just as σ, σ is low along ligatures. However, σ depends only on
the derivatives of ρ and DTΩ, and not their absolute values, so
it is scale-invariant with respect to the noise size and the noise
position vs salient shape features.

To compute σ, we need to define the vector field v. We next
present four designs for v which have different trade-offs be-
tween implementation simplicity and accuracy, as follows:
Importance gradient: As ρ is zero outside the skeleton by
construction, and increases along branches as we approach the
skeleton core [52, 53], v = ∇ρ is a possible choice for v;
Distance gradient: As the distance transform increases as we
advance away from ∂Ω into the shape, we can set v = ∇DTΩ;
Bisector method: For any skeletal point x ∈ S Ω, its two feature
points y1 and y2 are on different sides of the tangent plane to S Ω

at x. This tangent plane bisects the angle formed by the feature
vectors y1−x and y2−x [64]. Hence, we can compute our vector
field as v = x − (y1 + y2)/2.
Advection method: Several methods compute 3D skeletons
by contracting the surface ∂Ω in a vector field v that simulates
advection of uniformly-spread mass from ∂Ω following a mo-
mentum conservation principle [65, 54]. We use here the field
v proposed in [54], which has the desirable properties of being
tangent to the skeleton surface and pointing towards its core.
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Fig. 2: Problems when applying the smoothing method [19] to 3D shapes. a) Noise near corners or edges cannot be removed. b) Noise crossing edges cannot be
removed. c) Distance transform ripples at the junctions of the removed skeletal sheets with the core skeleton create unwanted surface undulations.

Best method choice: We test which of the above four defini-
tions of v yields the best detector σ as follows. We consider
a noise-free shape Ω and its un-regularized (full) skeleton S Ω.
We next add noise to Ω, yielding the shape Ω̃, and compute its
skeleton S Ω̃, regularized by σ, for all vector fields v, with gra-
dients computed by central differences. Ideally, S Ω̃ should be
very close to the ‘ground truth’ S Ω, since then the shape recon-
structed from it is very close to the original noise-free shape Ω.
We compare S Ω̃ and S Ω with the following two metrics

ν(S Ω̃, S Ω) = |S Ω̃ \ S Ω|/|S Ω̃|, (5)

ε(S Ω̃, S Ω) = 1 − |S Ω̃ ∩ S Ω|/|S Ω̃ ∪ S Ω| (6)

that is, total error (false positives and false negatives), respec-
tively false positive rate. Table 1 shows these errors for three
shapes in Fig. 4 and the four considered vector fields v. Bold
figures indicate minimal errors per shape. We see that the
bisector-method achieves the lowest errors except for one case,
where the distance-based method is slightly better.

Figure 3 shows the total error ε (Eqn. 6) as function of
the smoothing threshold σ0 for the fandisk model. The error
monotonically decreases with σ0 for all four considered vector-
field designs, which implies detection robustness in terms of
false positives. The feature, bisector, and advection models
yield very similar errors, all lower than the importance gradient
model. Hence, from an error perspective, the former three mod-
els are better. From an implementation perspective, the impor-

tance gradient, advection, and bisector methods are all trivial to
implement, and equally fast. The advection method is consider-
ably more complex to implement and over two orders of mag-
nitude slower as it involves solving a system of partial differ-
ential equations on the voxel volume (for details, see [65, 54]).
Finally, the distance gradient involves differentiation (comput-
ing ∇DTΩ), which can be affected by numerical noise on low-
resolution voxel models, whereas the bisector method does not.
Hence, our final best-method choice is the bisector method.

importance gradient

distance gradient
bisector method
advection method

Fig. 3: Total error ε for different vector field models v as function of the smooth-
ing threshold σ0 for the fandisk model.

Figure 4 compares the use of the improved saliency σ vs the
original saliency σ for the three shapes in Tab. 1. We see that
σ removes more noise skeletal sheets close to skeleton bound-
aries than σ (compare markers in columns (c) vs (e)). Hence,
the σ-regularized skeleton yields better noise removal along the
shape’s main edges (compare markers in columns (d) vs (f)).
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Importance gradient Distance gradient Bisector method Advection model
ν(S Ω̃, S Ω) ε(S Ω̃, S Ω) ν(S Ω̃, S Ω) ε(S Ω̃, S Ω) ν(S Ω̃, S Ω) ε(S Ω̃, S Ω) ν(S Ω̃, S Ω) ε(S Ω̃, S Ω)

cube 0.2506 0.2655 0.1565 0.1726 0.1523 0.1686 0.1556 0.1718
bunny 0.5094 0.5621 0.1840 0.3893 0.1715 0.3820 0.1689 0.3835
fandisk 0.5708 0.6057 0.2904 0.3741 0.2751 0.3684 0.2768 0.3666

Table 1: Errors of different vector fields used for the improved saliency metric σ (Eqn. 4).

a) original shape Ω b) noised shape Ω
∼

c) skeleton regularized by σ e) skeleton regularized by σ
_

d) σ based smoothing
_

f) σ based smoothing
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Fig. 4: Comparison of improved saliency metric σ and original saliency σ for shape smoothing.

3.2. Problem B: Removing edge-crossing noise

The improved saliency σ removes noise close to the shape
edges and most, but not all, small-scale noise located on such
edges. Figure 4 (insets in column (f)) shows some cases where
noise on edges cannot be removed. This is due to the complex
topology of 3D skeletal manifolds (Sec. 2.3): Even when we
fully prune their ligature sheets, noise-induced sheets will cross
salient-edge sheets, so we cannot disconnect the former from
the latter. This was never a problem for 2D shapes, due to their
far simpler-topology skeletons.

To solve this problem, we propose a new salience metric σ?

that combines the desirable properties of the importance ρ and
salience σ (see next Fig. 5): We first compute the importance ρ,
which is, as discussed earlier, low on both the noise sheets cor-
responding to the bump added atop the box, and on the ligatures
linking these sheets to the core, high-ρ, skeleton (Fig. 5b). Next,
we compute σ which is, as explained, low on ligatures but high
on both the noise and core-skeleton sheets (Fig. 5c). Hence,
thresholding σ cannot disconnect the noise sheets from the core
skeleton. We now introduce the computation of σ?: From each
skeletal point x ∈ S Ω, we trace a streamline in the vector field
v (computed by the bisector method, see Sec. 3.1), as long as
the encountered voxels y have increasing importances ρ(y) and
saliences σ(y) ≥ σ0. Figure 5c shows two such streamlines
with white arrows: If we start at point x (step 1 in figure), the
streamline advances as long as ρ increases and σ ≥ σ0 (step
2 in figure). We can see that ρ increases and σ is indeed large

along that path by looking at their values in Figs. 5b and c, re-
spectively. When the streamline reaches the center x′ of the
skeleton, ρ stops increasing since it is maximal here (red value
in Fig. 5b), so the streamline stops (step 3 in Fig. 5d). Finally,
we set σ?(x) to the importance ρ of the last voxel (that is, x′)
on the streamline (step 4 in figure). All points on core-skeleton
sheets, like x, will get a high σ? value. In contrast, points on
noise sheets (such as y in Fig. 5e) get a low σ? value, since
streamlines starting at them enter, at point y′, low-σ ligature
sheets (blue in Fig. 5c). Summarizing, on the core skeleton, σ?

is high (like σ but unlike ρ); and on noise and ligature sheets,
σ? is low (like ρ but unlike σ). Hence, thresholding σ? com-
pletely removes both the ligature and the noise sheets connected
to it (Fig. 5f). In contrast, thresholding σ does remove the liga-
tures but not the noise sheets, as shown earlier in Fig. 2(3c).

Computing σ? by tracing streamlines from all skeletal points
is very expensive – O(|S Ω|

2) complexity – as it visits the same
points many times. We propose a faster method: First, we sort
all voxels x ∈ S Ω in decreasing ρ order, using radix sort. Next,
we set σ? = ρ for all ligature voxels (i.e. having σ ≤ σ0) and
also for the voxel(s) having the maximal ρ value. From these
‘seeds’, we propagate σ? to 27-neighbor skeleton voxels, us-
ing flood-fill, so that a voxel’s σ? is always set to the largest
of the assigned σ? values to its neighbors. The entire process
takes now O(|S Ω|) steps. Figures 6b,c show σ? computed by
the (slow) streamline method and the (fast) seed method for the
fandisk shape in Fig. 7b. The two methods yield practically
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Fig. 5: Comparison of improved and global saliencies σ and σ?.

identical results, but the seed method removes slightly more
noise sheets (blue), which is good. In contrast, σ cannot dis-
connect the noise sheets from the core skeleton (Fig. 6a), just
like in the case of the cube model discussed earlier (Fig. 5).

a) b) c)

Fig. 6: Global saliency σ computed by (b) streamlines and (c) seed method. (a)
shows the saliency σ for comparison purposes.

To quantitatively compare how well σ? vs σ remove edge-
crossing noise, we designed an experiment similar to the one
in Sec. 3.1. We added curvilinear noise to several 3D shapes –
the idea behind is that such noise has a much higher chance to
intersect shape edges than the zero-dimensional point-like noise
in Fig. 4b, and creates precisely the challenges shown in Fig. 2b.
To synthesize noise, at p randomly selected points on the shape
surface ∂Ω, we define a random tangent direction d, and trace a
curve C of length l voxels on ∂Ω in direction d. During tracing,
we jitter d in the tangent plane to ∂Ω. Finally, we deform ∂Ω by
convolving C with a 3D ellipsoid-kernel filter of radius r in the
tangent plane to ∂Ω and height h in normal-to-surface direction.
For our experiments, we set p = 0.001|∂Ω|, r = 3, h = 3, and
l = 50 (all in voxels).

We compare σ?, computed both by streamline tracing and
the seed-based propagation method, with σ by computing the
errors ν and ε (Eqns. 5, 6) to measure how well the ground-
truth (noise-free) shape can be recovered. Table 2 shows the
results. The σ? detector, computed by seed propagation, is the
most accurate with respect to ground-truth for roughly half the

σ σ? (streamlines) σ? (seed propagation)
ν(S Ω̃, S Ω) ε(S Ω̃, S Ω) ν(S Ω̃, S Ω) ε(S Ω̃, S Ω) ν(S Ω̃, S Ω) ε(S Ω̃, S Ω)

bear 0.0139 0.6362 0.0136 0.6393 0.0137 0.6370
bunny 0.0197 0.6201 0.0192 0.6219 0.0194 0.6203
cat 0.0185 0.6268 0.0175 0.6337 0.0180 0.6281
chair 0.1228 0.1911 0.1181 0.2213 0.1181 0.1859
fandisk 0.0327 0.4538 0.0330 0.4556 0.0319 0.4563
cube 0.1174 0.1264 0.1176 0.1258 0.1152 0.1233
pot 0.0085 0.6791 0.0084 0.6797 0.0084 0.6794

Table 2: Comparison of detectors σ and σ? for removing curvilinear noise.

shapes. For the other half, σ? is below one percent less ac-
curate than σ or σ? computed by streamline tracing. Denois-
ing using σ has barely any effects here (images not shown for
space constraints), since most noise intersects the shape edges.
In contrast, denoising using σ? removes almost all the curvilin-
ear noise (see results further in Fig. 11). Hence, we next use σ?

as our regularization metric in the remainder of this paper.

a) b) c)

Fig. 7: Three models with curvilinear noise added (Sec. 3.2).

3.3. Problem C: Removing reconstruction ripples

As explained in Sec. 2.3, noise added to a shape perturbs both
its skeleton and its distance transform. To achieve a better re-
construction, we could (a) either postprocess the (regularized)
noisy skeleton §Ω̃ so it gets closer to the skeleton S Ω of the
clean shape Ω, or (b) postprocess the distance transform DTΩ̃

so it gets closer to DTΩ. To study which option yields better
results, we take a ground-truth (noise-free) cube shape Ω and
create a noised version Ω̃ by adding noise with p = 0.02|∂Ω|,
r = 2, and l = 5, following the model described in Sec. 3.2.
Next, we reconstruct smoothed shapes from the MAT combi-
nations (S Ω,DTΩ̃) and (S Ω̃,DTΩ) respectively. The first MAT
corresponds to situation (a) in which we would be able to post-
process the noisy S Ω̃ to perfectly recover the clean S Ω. The
second MAT corresponds to situation (b) in which we would be
able to postprocess the noisy DTΩ̃ to perfectly recover the clean
DTΩ. Figure 8 shows the results. Option (b) yields a far closer
result to the ground truth. Also, since postprocessing a surface
skeleton consisting of many complex 3D sheets is technically
much more complex than postprocessing a distance transform
voxel-volume, we next settle for option (a).

We postprocess the noisy DTΩ̃ by computingK({DTΩ̃(y)|y ∈
Ω∧‖y−x‖ ≤ r}), i.e., convolving it with a kernelK of radius r.
We tested four kernels: mean (KE), median (Kmed), constrained
opening (Ksup(Kin f ), where Ksup and Kin f are the supremum,
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Fig. 8: Removing reconstruction ripples by postprocessing either the skeleton
(c) or the distance transform (d). See Sec. 3.3.

respectively infimum kernels), and minification, defined by

Kmin f (x) =

Kin f (x) + r, if DTΩ̃(x) ≤ r
Kin f (x), otherwise

(7)

All kernels can be applied implicitly, i.e., on the entire 3D
volume Ω, or explicitly, i.e., using only the distance transform
values of points in the regularized skeleton. Table 3 compares
the reconstruction error between a noise-free shape Ω and the
smoothed shape Ω obtained from a noised version of Ω, com-
puted as ε(Ω,Ω) = 1− |Ω∩Ω|/|Ω∪Ω|, for all four kernels, im-
plicit and explicit versions, all with a radius r = 3 voxels. Noise
is generated using p = 0.014|∂Ω|, r = 2.1, h = 3, and l = 1, fol-
lowing the model in Sec. 3.2. We use here a zero-dimensional
(point-like, l = 1) noise so as to remove edge-crossing effects,
which were handled separately in Sec. 3.2. Table 3 shows that,
except Kmin f , all kernels are almost always more accurate in
their explicit versions. This is explained by the fact that only
regularized skeleton points contribute to filtering, thereby ex-
cluding ligature sheets, which are caused by the added noise.
In contrast, Kmin f gets better results in its implicit version as it
evaluates more neighbor points (not only those on the skeleton),
so it has a better chance in finding a minimum value.

KE Kmin f Ksup(Kin f ) Kmed
implicit explicit implicit explicit implicit explicit implicit explicit

bear 0.0325 0.0129 0.0758 0.1151 0.0481 0.0145 0.0359 0.0134
bunny 0.0272 0.0161 0.0702 0.1032 0.0366 0.0154 0.0305 0.0171
cat 0.0479 0.0268 0.0862 0.1162 0.0749 0.0294 0.0509 0.0276
chair 0.0516 0.0489 0.0132 0.1906 0.1015 0.0453 0.0736 0.0499
fandisk 0.0184 0.0183 0.0216 0.0955 0.0305 0.0151 0.0245 0.0190
hammer 0.0734 0.0329 0.0557 0.1835 0.1314 0.0279 0.0856 0.0368
cube 0.0076 0.0171 0.0008 0.0715 0.0002 0.0141 0.0242 0.0170
pot 0.0097 0.0047 0.0277 0.0306 0.0100 0.0043 0.0130 0.0047

Table 3: Comparison of four distance-transform smoothing kernels, implicit
and explicit versions. The smallest reconstruction error (implicit vs explicit)
for each kernel is in bold. The smallest reconstruction error for a model, all
kernels, is in green.

Reconstruction errors are quite similar for different filters.
There does not seem to be a best filter for all models. To

get more insight, we visually examine the filters’ effects. Fig-
ure 9 shows the reconstruction results using the explicit version
of KE , Kmed, Ksup(Kin f ), and the implicit version of Kmin f ,
selected as such given the earlier findings from Tab. 3. We
see that all filters K improve upon the filter-less reconstruc-
tion (Fig. 9b). Kmin f yields the visually smoothest result, with
noticeably cleaner surfaces, even though it yields a slightly
higher reconstruction error than Ksup(Kin f ) (Tab. 3). Hence,
we choose Kmin f as our filter of choice to use next.

4. Implementation

We implemented our method in C++ using OpenGL point-
based rendering of ∂Ω with radial splat kernels for fast display
of binary voxel models (see Fig, 10 for the full pipeline) and the
following components:
Skeletonization: We tested several methods for computing
the MAT (S Ω,DTΩ) and feature transform FTΩ: mass advec-
tion [54], multiscale skeletons [50], the method of Reniers et
al. [52], and the Integer Medial Axis (IMA) [46]. Among these,
IMA is the simplest to implement, and of complexity O(|Ω|),
which is in practice over one order of magnitude faster than the
other methods. IMA delivers noisier skeletons than the other
methods. This is not a problem since we anyways regularize
the skeleton next. Hence, we choose IMA to compute S Ω,DTΩ)
and FTΩ (Fig. 10, step 1). Several other mesh-based methods
for computing surface skeletons exist – that is, which represent
both Ω and S Ω as a mesh rather than in voxel space [66, 53].
We cannot easily use such mesh-based methods as several steps
of our framework are designed to work in a voxel setting, i.e.,
computing σ? by the flood fill method (Sec. 3.2) and postpro-
cessing DTΩ to remove ripples (Sec. 3.3); and since not all these
methods deliver the feature transform FTΩ. Moreover, as stated
in the introduction, our focus is feature-preserving smoothing
of voxel shapes. As such, we considered only voxel-based 3D
skeletonization methods, of which IMA is our choice.
Importance metric: Following [52, 50], we define ρ as the
geodesic distance between a skeleton’s feature points. We com-
pute ρ following the Dijkstra shortest-path search method on
the voxel connectivity graph of the ∂Ω voxels (Fig. 10, step 1).
For details and source code, we refer to [52].
Salience: We next compute the vector field v needed to evalu-
ate σ (Fig. 10, step 2) using one of the four methods described
in Sec. 3.1. As explained there, these methods offer differ-
ent trade-offs between implementation simplicity and accuracy,
which one can choose from. Following this, we compute the
global salience σ? (Fig. 10, step 4) following the simple flood-
fill process explained in Sec. 3.2. The simplified skeleton S Ω is
then trivially obtained by selecting all voxels of S Ω where σ? is
above the user-chosen smoothing level (Fig. 10, step 5), whose
setting is discussed next in Sec. 6.
Reconstruction: We compute the filtered distance transform
DTΩ ∗ Kmin f (Fig. 10, step 6), and finally reconstruct the
smoothed shape Ω as the union-of-balls centered on the reg-
ularized skeleton S Ω having as radii the We use for this the fast
reverse Euclidean distance transform implementation in [67]
which is O(|Ω|).
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Fig. 9: Comparison of different filters K for distance transform smoothing. See Sec. 3.3.
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Fig. 10: Pipeline of the proposed feature-preserving smoothing method. See Sec. 4.

5. Results

Figure 11 shows our method applied on a mix of synthetic
shapes with smooth surfaces separated by sharp edges (fandisk,
pot, chair) and organic shapes having more curved surfaces sep-
arated by less sharp edges (bear, dolphin, bunny, cat). The
shapes also feature thick parts (all except chair), tubular thin
parts (cat, chair) and slab-like parts (dolphin, chair). For each
model, we show the noised shape Ω, its raw skeleton S Ω, the
skeleton S Ω regularized by σ?, and the smoothed shape Ω. The
latter is computed using a smoothing threshold σ0 = 18, ex-
perimentally chosen by increasing σ0 until all noise is visually
gone.
Noise model: We use here denser, and more challenging, noise
than in all examples shown so far, given by the parameters
p = 0.02|∂Ω|, r = 2.5, h = 3, l = 6 (see Sec. 3.2). This
creates multiscale noise of quite high amplitude, densely cov-
ering the shape surface, which is challenging to remove. The
use of synthetic noise in testing denoising methods is known
in the literature, see e.g. [68] and [69]; for instance, the noised

fandisk in Fig. 11 is very similar to Fig. 12 in [68]. Such noise
is stronger (denser and/or higher-amplitude) than typical scan-
ning noise, and it is hard to find real-world scans exhibiting this
noise level. Moreover, for voxel models, scanning noise only
shows up at high resolutions, roughly 10003 voxels or higher; to
demonstrate our method’s denoising abilities on voxel models
of lower resolutions, we need to generate noise synthetically.

The smoothed shapes produced by our method are virtually
overall noise-free and recover the underlying edges, flat sur-
faces, curved surfaces, and tubular parts well. We also see that
the surface skeletons extracted by the IMA method are quite
complex for all models (Fig. 11b). This is not an issue in our
context, in contrast to other applications of skeletons, e.g. seg-
mentation [14] or classification [64]. As explained, our method
does not need a clean skeleton, since its regularization (done by
upper thresholding σ?) is sufficient for the union-of-ball recon-
struction for smoothing purposes. Figures 11c,d show the reg-
ularized skeletons S Ω colored by the distance transform DTΩ,
respectively the salience σ?. We see how the regularization re-
moves the noise and ligature sheets of the raw skeletons so as to
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deliver the desired feature-preserving smoothing. Also, we see
that the distance transform has low values on large portions of
the surface skeleton such as the bear’s muzzle and paws, shark’s
fins, fandisk edges, pot lid rim, bunny’s ears, and cat’s paws and
tail (blue in Fig. 11c). These skeleton parts, close to the shape’s
surface, would have been removed by naively thresholding the
importance ρ, resulting in unwanted loss or smoothing of the
corresponding shape features. In contrast, the σ? metric has
high values in these areas (warmer colors in Fig. 11d), so the
corresponding shape salient features are kept after smoothing,
as visible in Fig. 11e. Running times for our method on a Linux
desktop PC at 3.2 GHz with 16GB RAM are shown in Tab. 4b.

Method Parameters (other than default)
Laplacian max. normal deviation 60◦

Two-step smoothing steps 40
method degree 60

normal smoothing steps 20
vertex fitting steps 20

APSS scale 15
RIMLS scale 15
Wei et al. σS = 0.45, n1 = 30, n2 = 20
WLOP scale 7..15

(a)

Shape Resolution Time (sec.)
shark 4203 52.3
bear 2763 63.7
bunny 2163 98.09
cat 4203 108.7
chair 4203 173.1
fandisk 2763 481.7
hammer 5203 39.2
cube 1483 31.7
pot 2763 203.6

(b)

Table 4: a) Parameters of compared methods. b) Our method’s processing time
for different shapes.

Comparison with mesh-based methods: We further com-
pare our method with six well-known techniques for 3D shape
smoothing: surface-preserving Laplacian smoothing [59], two-
step smoothing [7], algebraic point-set surfaces (APSS) [8], ro-
bust improved moving least squares (RIMLS) [11], Wei et al.’s
kernel low-rank recovery [69], and the rolling guidance normal
filter (RGN) [68]. The first four methods are readily available in
MeshLab [70], which favors comparison replicability. For the
method of Wei et al. [69], we did not have the implementation,
but provided the noised meshes to the authors who delivered us
the results they obtained from them. RGN iteratively applies a
joint bilateral filter to face normals at a specified scale, which
empirically smooths small-scale geometric features while pre-
serving large-scale ones. We used the public RGN implemen-
tation on the website of the first author of [68]. Table 4a lists
the parameter values for the compared methods that we had
to change from the MeshLab defaults so as to obtain the best
feature-preserving smoothing for each method. For Wei et al.,
the authors provided the optimal parameters σS , n1, n2 them-
selves after experimentation (for explanations of these, we re-
fer to [69]). For RGN, we used the parameter values σs = 5,
σr = 0.8, and n = 5 iterations.

To make the task more challenging, we noised the input
shapes using dense and high-amplitude curvilinear noise with
parameters p = 0.01|∂Ω|, r = 2.1, h = 7, and l = 4, following
the rationale outlined at the beginning of this section. Since all
above methods are mesh-based, we converted our voxel shapes
to meshes using isosurfacing. Our method recovers the orig-
inal shapes significantly better than the other tested methods
(Fig. 12). Note that the wavy artifacts in Fig. 12f are due to the
isosurface extraction from the limited-resolution voxel models.
The method of Wei et al. only removed a very small amount of
the present noise from all the tested models.

Comparison with point-cloud methods: We also compare
our method with two point-cloud denoising methods: WLOP
consolidation [71] and deep points consolidation (DPC) [72].
WLOP uses a weighted locally-optimal projection operator
to produce a set of denoised points over the original point
cloud, trying to improve normal estimates through local PCA.
These normal estimates are further consolidated by an iterative,
priority-driven, normal propagation step. DPC improves upon
WLOP by augmenting each surface point by an inner point that
resides on the so-called meso-skeleton. The strength of this rep-
resentation is that it combines both local and non-local geomet-
ric information. Both WLOP and DPC take as input the point
cloud given by the vertices of the noisy meshes which we gen-
erated from our noisy voxel models via isosurfacing. Since both
methods redistribute consolidated points over the original point
cloud, we downsampled the input point cloud to about 30K
points. For both methods, we used the code available on the
website of the first author of [72], with default parameters, ex-
cept the WLOP scale. For each model, we set the WLOP scale
to values between 7 and 15 to strike a tradeoff between feature
preservation and outlier removal. Withe these settings, WLOP
took between 120 to 340 seconds, while DPC took between 221
and 430 seconds. Similar to the mesh methods, WLOP and
RPC succeed in removing almost all noise, but also smooth out
salient edges and corners.

Several observations emerge from the above comparison. We
see that both mesh-based and point-cloud-based methods have
some issues in removing noise and preserving salient edges or
corners. Depending on the method and model, there are ar-
eas in which either noise is not removed, or salient features
are smoothed out. This is explained by the nature of the noise
present in these shapes (strong and multiscale) – it is hard to
find parameters that separate such noise from features since
they both occur on a range of scales. Our method succeeds
in doing this separation better since its operation is driven by
the shape’s surface skeleton and global saliency σ?, which, as
explained, are both global and multiscale descriptors: The clas-
sification of a surface voxel in noise vs feature depends on its
corresponding skeleton voxel and the σ? value thereof, which
both in turn are computed from non-local shape properties. Ac-
tually, σ? is computed globally from the entire shape via the
importance analysis (Sec. 3.2, see again Fig. 4).

6. Discussion

We next discuss several aspects of our method:

Generality: Our method can remove noise of any type and
from any kind of voxelized models.

Parameters: We have a single free parameter: the saliency σ?

to threshold to remove the noise (Sec. 3.2). As explained there,
σ? has the same dimensionality as the importance ρ, which in
turn equals the length, in voxels, of the shortest-path on ∂Ω

between a skeleton’s feature points. Hence, to remove a noise
bump of base thickness 2r and height h created by our noise
model (Sec. 3.2), we can set σ? = 2rh. This explains the values
used for σ? in this paper.
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a)

b)

c)

d)

e)

bear shark fandisk pot chair bunny cat

Fig. 11: Noisy models (a) with raw skeletons (b), regularized skeletons colored by distance transform (c) and saliency metric σ? (d), and final smoothed shapes
where salient shape features such as flat areas and edges are recovered from the noise (e).
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Fig. 12: Comparison of our method with other shape denoising techniques. See
Sec. 5.

a) b) c) d)

Fig. 13: Comparison of our method (d) with naive skeleton pruning (b) and
salience-based denoising [19] (c) for a 2D binary pixel shape (a). Insets show
distance-transform ripples (red in (c)) that our method can remove.

Implementation: Our method is simple to implement, need-
ing only the IMA method for the raw skeleton S Ω [46] and Di-
jkstra’s shortest-path tracing on ∂Ω for ρ [52]. While its per-
formance is still slower than mesh-based denoising alternatives
(Tab. 4a), massive speed-ups can be obtained by computing the
skeleton, distance, and feature transforms on the GPU as shown
in [73]. For replication purposes, the source code of the method
is available at [74].

Comparison to 2D: Our method shares goals, and technical
points, with its 2D precursor [19], so it is useful to compare
these methods for denoising 2D binary pixel shapes. Figure 13
does this for the original noisy shape in [19]. Naive skele-
ton pruning based on the importance ρ eliminates noise bur
also rounds off salient corners (b). Saliency-based pruning of
the 2D skeleton removes noise and keeps salient corners, but
also creates some unwanted ripples (marked red in Fig. 13c).
Our method removes these (Fig. 13c). In detail, our method
proposes mechanisms to handle three problems (A, B, C, see
Sec. 3): Problem A is far less visible for 2D shapes, since the
small-scale noise referred to in Sec. 3.1) are quite hard to see
in 2D binary images; in contrast, due to the shading typically
used when viewing 3D shapes, such small-scale noise is much
easier to spot. Problem B is inherent to the 3D case, and does
not occur in 2D shapes – there is no equivalent 2D configura-
tion to the ‘noise crossing edges’ situation depicted in Fig. 2
(1b). Problem C is similar to A – the small-scale ripples due to
the distance transform (see Sec. 3.3) are easier to spot for 3D
shapes due to their shading than in 2D shapes – compare, for ex-
ample, the ripples in Fig. 2 (4c) with the red insets in Fig. 13c.
Concluding, our 3D method can be applied to denoise 2D bi-
nary pixel shapes, but its improvements vs the original method
in [19] are quite small, which, we believe, do not justify the
added implementation complexity. The main added value of
our method is for 3D binary shape denoising, a case where the
naive application of [19] yields poor results (Fig. 2).

Limitations: The smoothing quality of our method is influ-
enced by the precision (centeredness) of the computed surface
skeleton, which is in turn determined by the voxelization reso-
lution. Higher-resolution models have skeletons that capture
more surface details, thus allow to better detect and remove



Schubert et al. / Computers & Graphics (2020) 13

noise, but need more memory and processing time. More im-
portantly, our method cannot distinguish between detail surface
perturbations which are located far away from the salient shape
edges and actual noise, and will remove the former while pre-
serving the latter. However, we argue that this is an intrinsic
problem of all smoothing methods – without additional context-
specific information, such noise cannot be distinguished from
actual details.
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7. Conclusion

We have presented a new method for feature-preserving de-
noising of 3D volumetric models using surface skeletons. For
this, we identify skeletal sheets created by undesired noise us-
ing an extension of the salience metric earlier proposed in [19]
for 2D shapes. Following simple threshold-based removal of
these sheets, we reconstruct noise-free models using a modified
Euclidean distance transform to remove low-frequency ripples.
To our knowledge, our method is the first one demonstrating the
added value of 3D surface skeletons for shape denoising. Our
method has a single free parameter denoting the geometric scale
of noise to be removed. In contrast to local denoising methods,
our method fully preserves salient shape features such as edges
and corners, as captured by the surface skeleton. We demon-
strate our method for a variety of 3D shapes contaminated by
significant amounts of noise and show that we can achieve bet-
ter denoising than known alternative techniques.

All steps our method are amenable to SIMD parallelization,
so exploiting architectures such as GPUs can lead to significant
performance gains. Secondly, we consider adapting our method
to handle mesh-based shape representations and their surface
skeletons using recent GPU-accelerated mesh skeletonization
methods [53]. Finally, we plan to extend our comparison with
additional feature-preserving denoising methods.
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