
An Object Oriented FEM System

Alexandru Telea

12th December 1996

Abstract

This paper gives a short presentation of an object-oriented FEM system
and emphasizes on the advantages of object orientness in the task of building
such a system. The model presented here has been implemented as a C++
’class library’ and has resulted in a fully operational FEM system.

1 Goals Accomplished So Far

The C++ FEM system currently available is able to perform computations on arbi-
trary two-dimensional domains. It supports convection-diffusion, Navier and Navier-
Stokes PDEs, conjugated gradient and BiCGSTEP solvers and SSOR and ILU(0)
preconditioners. All problems can be time dependent (instationary) or stationary.
The supported boundary condition types include Dirichlet and Neumann boundary
conditions. Three-point and six-point triangular elements are supported together
with two different, transparently interchangeable mesh generators. All phases of a
FEM simulation are supported: problem/domain definition, boundary conditions
definition, problem solving and simulation visualization.

The system works completely in terms of objects: points, curves, surfaces, do-
mains, problems, cameras, scalar/vector fields. This model allows a user to spec-
ify, solve and visualize a problem with an effort comparable to writing a ’batch’
file for a simulation package, but with the full advantage of a system open to pro-
gramming, upgrading and user interactivity.

2 System Structure

The general structure of the system is that of a class library. Several base classes
are provided for establishing an interface between the FEM universe and the user.
These base classes can be ’customized’ in various ways in order to provide specific
functionality.

1

As a general rule, the system is open to the addition of new features to classes
or to the modification/specialization of existing features. This is a very important
and not trivial requirement, especially if run-time flexibility and interactivity is a
goal.

The next sections will present the class set and outline the reasons for which the
present structure was adopted. The class set is divided into three parts, according
to a common functionality of the classes of a part. First part describes geometrical
classes, i.e. classes that describe the geometry of the problem’s universe. The sec-
ond part describes problem definition classes, i.e. the classes mainly used to state
a problem. The third part contains interaction classes, mainly concerned with vi-
sualization and user interaction.

3 Geometrical Classes

A FEM problem is defined over a physical domain. The description of this domain
is the task of geometrical classes. These classes are very similar to standard 2D
geometrical classes from computer graphics systems. There are however important
internal differences that have to do with efficiency and data representation required
by the other FEM classes.

3.1 Class USERPOINT

A USERPOINT is the simplest geometrical token available for a problem domain
definition. It is used as a control point for the curves that will eventually build the
domain’s boundary. A USERPOINT is basically a two dimensional point having
an extra ’coarseness’ value which determines the mesh refinement around the do-
main’s area where the point is. A problem definition will therefore proceed with
the creation of some USERPOINTs that will determine the shape of the computa-
tional domain. A USERPOINT is therefore a POINT plus a coarseness value (see

USERPOINT

POINT

Figure 1: USERPOINT class

2

figure 1). POINT is a base class for USERPOINT which contains the point’s x and
y coordinates.

3.2 Class USERCURVE

A USERCURVE is a two-dimensional curve connecting two USERPOINTs. It is
the next construction element which can be used to build a computational domain,
after the USERPOINT. A USERCURVE is determined by its type (i.e. the kind of
curve it is, like circle arc, ellipsis arc, straight line, polyline, etc) and a set of con-
trol USERPOINTs which determine its shape and location. For example, a USER-
LINE is determined by two USERPOINTs, a USERARC is determined by three
USERPOINTs (which can be three points on the arc or two points at the arc’s ends
and a third being the center of the circle the arc belongs to), a POLYLINE is de-
termined by the sequence of all points it contains, and so on.

All curve classes are derived out of an abstract class USERCURVE which con-
tains all common curve features (like inquiring about control points, moving a con-
trol point, etc). USERCURVE has no constructor, since we can’t construct an ab-
stract shapeless curve. The other classes are derived out of USERCURVE and add
only the constructors.

A USERCURVE internally consists of a uni-dimensional meshing of the curve.
Points are created on the curve in between the control USERPOINTs. We call this
process ’meshing’ a curve. The user should generally not access the internal repre-
sentation but manipulate the whole problem in terms of high-level objects. How-
ever sometimes there is a need for a point-level examination of USERCURVEs,
therefore the internal meshing data is available for reading.
Classes derived out of USERCURVE should (ideally) not add any other methods

no constructor

USERCURVE

USERARC USERPOLYLINEUSERLINE

Figure 2: USERCURVE base class and derived classes

but the constructor, since a ’generic’ curve should be manageable via the USER-
CURVE interface.

USERCURVE is used also to implement boundary conditions. The user can
easily prescribe a condition type and value over a USERCURVE. Condition values
are actually C++ callback functions that are supplied by the user.

3

3.3 Class SURFACE

A SURFACE is essentially a two-dimensional arbitrary region of the plane defined
as the zone enclosed by a set of USERCURVEs. The list of USERCURVEs defin-
ing a SURFACE is called the surface’s contour. A USERCURVE can be added to
a surface with a plus or minus sign, this sign determining the way the curve is ’run’
when the contour is scanned. This allows using ’fake’ curves to describe a surface
with holes, by using a curve twice (with different signs) to connect the hole’s con-
tour to the outer contour. Of course, a SURFACE’s contour should be well-defined
(i.e. should not have self intersections and should close properly).
A SURFACE is meshed in order to produce a list of ELEMENTs. An ELEMENT

SURFACE

list of elements
list of USERCURVEs

list of POINTs

meshing engine

ELEMENT

USERCURVE

POINT

MESH_ENGINE

Figure 3: SURFACE class and its main members

is the class representing the mathematical finite element. It basically consists of a
(fixed size) set of POINTs. When meshing the SURFACE, new points are created.
The SURFACE will store also a list of all POINTs being created at its meshing.
A SURFACE has a reference element size which determines the size of the ele-
ments produced when meshing it. This is a global mesh refinement control, seen
as opposed to the local refinement given by the USERPOINT coarseness.

There are many ways to mesh a SURFACE and produce a list of ELEMENTs
and a list of POINTs. We have encapsulated the meshing phase as a class called
MESH ENGINE. A MESH ENGINE is therefore a class that takes a SURFACE
and meshes it. Since (run-time) flexibility is a major issue, we have decided to
have the SURFACE and the MESH ENGINE as two separate notions. The con-
nection is that a SURFACE uses a MESH ENGINE, which practically means that
a SURFACE object keeps a reference to a MESH ENGINE object which it will
use when meshing itself. The MESH ENGINE has a thin interface, consisting (so
far) only in a constructor and the mesh() method. This design issue is of a funda-
mental importance and will be discussed later in its more general aspect. The sep-
aration of the SURFACE from MESH ENGINE allows us to attach/detach or re-
place a MESH ENGINE from a SURFACE at run-time. We can therefore use dif-
ferent MESH ENGINEs having different space/time performances transparently.
The current implementation features two MESH ENGINEs that use totally differ-
ent surface meshing policies and internal data representations and both produce

4

three-point triangular elements:
Besides the geometrical information, a SURFACE carries also FEM data like phys-

MESH_ENGINE

mesh()

MESH_ENGINE_1

mesh()

MESH_ENGINE_2

mesh()

Figure 4: MESH ENGINE class hierarchy

ical surface properties (diffusivity, source and convection terms, etc) given as user-
written callback functions defined over the surface.

4 Problem Definition Classes

Problem definition classes encapsulate more specific FEM data and behaviour. They
are one layer above the geometrical classes, i.e. the use geometrical classes for
their definition. Actually almost all the FEM code is encapsulated in these classes.

4.1 Class DOMAIN

A DOMAIN object describes, as its name says, the computational domain of a
FEM problem. Basically a DOMAIN is a collection of adjacent two-dimensional
surfaces that share common USERCURVEs. Describing a FEM problem’s DO-
MAIN as a collection of SURFACEs has several advantages:

• different surface properties (e.g. diffusivity, source and convection terms,
viscosity, etc) can be prescribed on different parts of the computational do-
main. This leads to a natural domain decomposition in surfaces.

• complex geometries can require different mesh refinements over different
areas. This can be easily done by choosing different reference element sizes
for different surfaces in a domain.

When a DOMAIN is built, its component SURFACEs are assembled, global EL-
EMENT and POINT lists (containing all ELEMENTs and POINTs over the DO-
MAIN) are created and some topological data (like neighbour points of each point
and neighbour elements of each element) are created. This data will be heavily
used by the FEM code, so attention has to be paid to its storage and access speed.

5

DOMAIN

list of ELEMENTs

list of POINTs

neighbouring relations

ELEMENT

POINT

list of SURFACEs SURFACE

Figure 5: DOMAIN class

Moreover, in the phase of assembling SURFACEs into a DOMAIN, some new
POINTs are created. Midpoints of the 6-point elements (or Taylor-Hood elements)
are not created during SURFACE meshing, in order to keep the meshing algorithm
simple and fast. If the DOMAIN contains such elements, these midpoints are cre-
ated now and inserted into all the elements, which practically become 6-point tri-
angles out of 3-point triangles. Node renumbering is also done in this stage in order
to obtain a smaller bandwidth of the FEM system’s matrix. This is done by a stat-
ically built-in code in the DOMAIN class, but it could be done by a ’renumbering
engine’, allowing different renumbering schemes to be interchangeable transpar-
ently and at run-time.

4.2 Class PROBLEM

PROBLEM is the highermost class in the FEM library. It describes a finite element
problem, posed on a given DOMAIN, having some given initial conditions. It also
stores information concerning whether the problem is time dependent or not. Some
other FEM specific data is stored in the PROBLEM class (e.g. stiffness matrix,
solution vector, stiffness matrix builder, solver, etc).
The specific FEM data used by PROBLEM are also implemented in an object-

BUILD_ENGINE

SOLVE_ENGINE

PROBLEM

stiffness matrix builder

 stiffness matrix

solution vector

solver

MATRIX

VECTOR

Figure 6: PROBLEM class

oriented fashion. The stiffness matrix is encapsulated in a general MATRIX class
and the solution vector uses a VECTOR class.

A PROBLEM is fundamentally characterized by its type (e.g. diffusion, Stokes,
etc). Almost all the problem-specific part is encapsulated in the concept of a builder
engine. A BUILD ENGINE (in OO terms) is a class that is responsible with build-

6

ing the PROBLEM’s stiffness matrix, which is actually the action giving the spe-
cific of a FEM problem. We used here the same concept as for mesh engines, i.e.
separating the matrix building concept from the problem one. This allows us to
have a PROBLEM object and customize it with different builder engines, practi-
cally making it a different problem each time.
The same is true for the solver. The PROBLEM object uses a SOLVE ENGINE

BE_DIFFUSION_3

build()

BE_NAVIER_STOKES

build()

BE_STOKES

build()

BE_DIFFUSION_6

build()

BUILD_ENGINE

build()

Figure 7: BUILD ENGINE class hierarchy

which is basically a solver taking the stiffness matrix and filling the solution vec-
tor. Several solvers are available to be connected to a PROBLEM so the user can
choose the solver that best corresponds to its PROBLEM object. There are cur-
rently two solvers implemented, one for symmetric matrices and the other one for
asymmetric matrices. The SOLVE ENGINE contains internally a preconditioner
engine, which preconditions the stiffness matrix prior to solving. Its interface is
again based on the interchangeable engine concept.

SOLVE_ENGINE

solve()

SOLVE_SYMM

solve()

SOLVE_ASYM

solve()

Figure 8: SOLVE ENGINE class hierarchy

5 Interaction and Visualization Classes

The last part of the FEM system is concerned with user interaction and visual-
ization. The main concept is the CAMERA class. A CAMERA is basically a
window-based view of a set of FEM objects (e.g. USERCURVEs, DOMAINs,

7

PROBLEMs, etc). Besides displaying the objects, a CAMERA will allow the user
to interact with them (e.g. select an object, move it, point to a location inside it,
etc).

All the above functionality is implemented as a class hierarchy having the CAM-
ERA as base class providing mainly the interface for adding/removing objects to/from
a camera and for changing the viewpoint by translations, rotations and scalings.
The next level is GL CAMERA, a class which defines a supplementary interface
part, based on the OpenGL graphics library. While CAMERA is a system-independent
class, GL CAMERA is system-dependent class. GL CAMERA is also an abstract
class.
There are two derivation branches of GL CAMERA. The first is AUXCAMERA,

GL_CAMERA

CAMERA

AUXCAMERA MCAMERA

MCAMCTRL

Figure 9: CAMERA class hierarchy

a simple fully functional camera based on the AUX extension to OpenGL. It fea-
tures a window driven by the window manager that is able to display FEM objects
and allow selection and location. Its disadvantage is that only one AUXCAMERA
can be opened per application, due to the structure of the internal loop of the AUX
system.

The other derivation is MCAMERA, a camera based on OpenGL and the Mo-
tif user interface. the purpose of the MCAMERA is to be added as a widget in a
more complex Motif application. Practically, it is a ’FEM visualization and inter-
action Motif widget’. A more sophisticated and easier to use camera is MCAMC-
TRL, which is a standalone ready-to-use camera having Motif controls for view-
point positioning. Applications can take full advantage of the Motif interface by
using multiple MCAMERA objects that will open several windows each and allow
independent visualization of different or the same FEM objects.

8

6 A Design Issue: Object Composition versus Class
Composition

An essential design issue has been outlined a couple of times during this paper.
Basically it can be seen as having two ways of adding features to a (C++) object.
The first way is class composition, that adds features (e.g. methods or data mem-
bers) by inheritance. The second is object composition, adding features by storing
a reference to the new feature in the object.

Object composition (sometimes called delegation) has some major advantages
for a high-level object-oriented design:

• first of all, it allows adding features per object instance rather than per class.
In a system having multiple independently varying features this keeps the
number of classes at a minimum.

• it allows changing a feature at run-time rather than at compile time, thus
making the system much more flexible. The result will be that object ’types’
will seem to partially change at run-time.

• it decouples the feature design from the object’s design even more than in-
heritance does.

• it removes the need for expensive and problematic virtual inheritance class
hierarchies

The featured example in this paper is the engine concept. The main disadvan-
tage of object composition is run-time efficiency. However the use of virtual func-
tions in a class composition is not (generally) significantly faster than object com-
position, which can be seen in the end as a run-time modifiable virtual function
mechanism.

9

