
A ”Framework” for Object Oriented Frameworks Design

David Parsons1, Awais Rashid2, Andreas Speck3, Alexandru Telea4

1 Systems Engineering Faculty, Southampton Institute, UK
2 Department of Computer Science, Lancaster University, UK

3 Faculty of Computing Science, University of Tuebingen, Germany
4 Department of Mathematics and Computing Science,
Eindhoven University of Technology, The Netherlands

Abstract

Object-oriented frameworks are established tools for domain-specific reuse. Many frame-
work design patterns have been documented, e.g. reverse engineering framework architectures
from conventionally built applications for a given domain. The framework development cy-
cle generally evolves from open framework to closed application. We describe a more flex-
ible component-based approach to framework design that stresses a common interface for
’plugging-in’ new components at different lifecycle stages. An analysis of framework-related
user roles shows that the classical developer/end-user boundary is too rigid. We see the frame-
work’s development as a continuum within which its ’actors’ can customise its behaviour. This
both increases the system’s flexibility and reduces its maintenance requirement. A case study
of three frameworks for different application domains illustrates the presented principles.

1: Introduction

A central tenet of object technology adoption has been the reuse promise, but this has
proved difficult to deliver in practice. Inheritance-based reuse has been effective only in lim-
ited cases, such as general purpose components as container There is a trade-off between
reusability and tailorability [3], as the user’s requirements cannot be effectively anticipated.
In practice, reuse can only be achieved within domain-specific constraints. The most effec-
tive route to reuse has been that of the (object-oriented) framework, where the reuse context
is constrained to a given domain. A framework can be defined as ”a system that can be
customised, specialised, or extended to provide more specific, more appropriate, or slightly
different capabilities” (see Gabriel [4]). Application-specific frameworks cover precise, fo-
cussed domains (e.g. hardware control systems [10], scientific visualisation and simulation
[14, 15, 19], and thus are highly reusable. Frameworks consist of frozen spots (already coded
software pieces to be reused) and hot spots (flexible elements, allowing users to adjust the
framework to concrete application needs). Unlike most class libraries, frameworks encapsu-
late control flows as well as object interfaces, thus modelling a system’s dynamic behaviour
as well as its structure.

If we accept frameworks as effective for domain-specific reuse, then we might ask ourselves
what is a framework architecture and how can we develop an effective framework that meets
its users’ needs. In this paper we discuss the frameworks’ characteristics, the roles and inter-
actions of their developers and users, and catalogue the framework development issues and
trade-offs. We propose a component-driven approach to framework design that stresses sys-
tem flexibility at all development, use, and maintenance phases. User requirements analysis is
seen as as an essential aspect of the framework designer’s task, since meeting different require-
ments in different domains can often lead to radically different framework designs. We group

1



framework users into a number of roles, each requiring a suitable component level interface.
The requirements’ union is seen as the interface specification that the framework designer
must provide. We illustrate our ”framework” for frameworks design by three frameworks for
different application domains, built on its principles.

2: Flexible Elements of Object Oriented Frameworks

Based on customisation characteristics, OO frameworks fall into two main categories:

• White Box Frameworks Component and application developers need to know the
white box frameworks’ architecture to adapt the framework to a concrete application.
The hot spots are usually limited to inheritance (Fig. 1 left). When a system’s hot spots
are clear, building a white box framework (e.g. by generalising from a few complete
applications) is relatively easy. The disadvantage of such frameworks is that the end
user needs to know about the complete architecture in order to use it, implying a long
learning curve and high error risks. Many OO application libraries are build as white
box frameworks [15, 13].

• Black Box Frameworks Black box frameworks, in contrast, hide their internal struc-
ture. Users just know a general framework description and its hot spots rather than
detail architecture knowledge. Using black box frameworks is thus easier than using
white box frameworks. Black box frameworks, however, are harder to build than white
box frameworks. The hot spot mechanism is usually composition (Fig. 1 left). Black
box frameworks implement the information hiding principle of Parnas [7] best. They
are often found as application specific frameworks (e.g. for machinery controlling [10],
scientific visualisation [14] or data processing [5]) where software components mirror
application domain concepts. Black box frameworks are harder to build for less domain-
specific cases as it is more difficult to anticipate the required component types.

Few ’pure’ white or black box frameworks exist in practice. Often some hot spots are devel-
oped using a white box approach while others use the black box approach. During framework
implementation white box elements can be refined to black box ones. Frameworks tend to
mature in this process, beginning as white box and evolving to black box frameworks. Our
component driven approach to framework development supports both white and black box
frameworks. The framework components may contain both elements in arbitrary combina-
tion.

builds uses adds uses builds uses

Framework 
  Backbone Components Application

framework     component          application            end
developer      developer            developer             user

Frozen Spot 
   Classes

Hook

Application

Composition

Black Box

Frozen Spot 
   Classes

Hot Spot Hot Spot

Inheritance

Hook

Application

Figure 1. Hot spots in black box and white box frameworks (left) Framework user
roles (right)



3: Actors and Their Roles

During framework-based application development, users fall into four categories orroles:
framework developer (FD), component developer (CD), application developer (AD), and end
user (EU) (Fig. 1 right, the solid arrows show the actions involving these roles). The FD
builds the framework ’backbone’. The CD builds new components and integrates them in
the framework. The AD assembles these components into a custom application expected
by the EU. Consider e.g. a graphical user interface (GUI) framework built by the FD,
extended by CDs with add-on GUI components, and used by ADs to build applications for
EUs. Software reuse appears in two places. First, CDs can reuse code via constructs of
the component development language (inheritance, templates, etc) to build new components.
Second, the AD employs the framework’s specific ’super language’ reuse mechanisms to reuse
components when building applications or even to build components out of existing ones [6].
The latter mechanisms are more effective/flexible than the former, since designed for a specific
application domain. The dashed block arrows in Fig. 1 right show that the presented roles
may be assumed by the same people. For example, although the FD is mainly responsible for
building the framework, he may also be the first CD, e.g. in frameworks as OLE, CORBA
implementations and Java Beans. Similarly the CDs, ADs and the EUs could be the same
people. The FD’s core task is to provide tools for all actors (e.g. component building tools for
the CDs, application assembly tools for ADs, and possibly command and control interfaces
for EUs). Even though developers and end users may (and should be able to) perform their
specific tasks independently the FD must implement all the mechanisms for all these roles,
such that each role gets the best tools it requires. In addition to providing a framework
satisfying all roles separately, FDs must provide for an easy role transition, since the same
person may frequently switch roles. For example a scientist writes components as a CD, then
assembles them into a test application as an AD, and finally experiments with the application
as an EU.

4: A Component-Driven Approach To Framework Design

To satisfy the previously presented requirements, we advocate a framework architecture
based on highly cohesive but loosely coupled components, managed by a central framework
backbone (Fig 2 left). Components can then be developed independently of each other and
are exchangeable hence providing an overall high flexibility degree. The backbone is the core
element; its design depends strongly on the target application domain. It mainly provides
communication, data exchange, and synchronisation mechanisms, and hot spots for plugging-
in components. Basic components contain the basic framework functionality and are built
by the FD or the CD. Through the component-only-customisable hot spots basic components
use the backbone for data exchange and communication. The framework backbone and
the basic components are mandatory for a complete framework. Component or application
developers can customise the components but not the backbone, as the latter should maintain
the modelled domain’s invariants. Additional components may be further added by the CD
or AD to adapt the framework to additional requirements. They may interact with the
basic components and with the backbone, that calls back on their services. This modular
framework architecture allows the backbone and also the components’ reuse in other contexts.
To build such a component-based framework which satisfies the user requirements listed in
Section 3, we propose a methodology having the following four steps.

• 1. Application Domain and Role Definition First we identify the application
domain to be covered by the framework. The different user requests are classified
into user roles, whose requirements and mutual interactions are clearly defined. These



Legend

Customises (implies Uses)
Uses

(B=Basic, A=Additional) Component

Component-only-customisable Hot Spots
Hot Spots

Framework
  Backbone

BC

AC

AC

AC

AC

BC

BC

BC
AC

Rigid

Flexible

Fl
ex

ib
ilit

y 
fo

r U
se

rs

EUADCDFD

EU

EU

CD

FD

Legend: FD = framework developer
CD = component developer
AD = application developer
EU = end user

1

2

3

6

Efficient                Less EfficientRun-time Performance

FD

ADCDFD

FD ADCD

ADCDFD EU 4

AD EU 5

CD

AD EU

Static/Compiled            Run-time/InterpretedBackbone Implementation

Figure 2. Framework backbone with plugged-in components (left) Framework imple-
mentation trade-offs (right)

determine the framework design requirements, which outline a base for the development
[11]. How user requirements analysis influences the framework implementation (e.g.
choosing an OO design or not, how we define the hot spots, etc) is detailed in Section 5.
This is the crucial phase of the whole process, as a correct definition of roles and
requirements strongly influences all the following steps.

• 2. Backbone Development The framework backbone is designed and implemented
here by the FD as a logical conclusion of the already found requirements. This phase
is also detailed in Section 5.

• 3. Basic Components Development The basic components and their hot spots
are now developed, in conformance with the standard component interface requirement
implied by the existing backbone. This conformance should not constrain the CD, as
these interfaces were inferred directly from the users’ requirements in the first phase.

• 4. Additional Components Development Finally, CDs or ADs may create an open
set of custom components which directly plug in the existing framework and may or
may not use the basic components. The only constraint is that additional components
respect the backbone’s interfaces, which is ensured by the requirement analysis in the
first phase.

The above phases have no strict boundary like in the waterfall model [2]. As in other OO
software development processes (e.g. [1]) the borders between phases are weak and designers
may work in two phases on different components at the same time. However a careful
requirement analysis in phase 1 will yield a stable framework, such that redesign gets localised
to phases 3 and 4.

5: Backbone Architecture and Flexibility Requirements

As outlined in the previous section, providing the right flexibility and user requirements’
fulfilment inferred from the roles’ analysis in the backbone differentiates a successful and a
rigid, inadequate framework. Possible implementations of the presented component-based



framework model can be seen as a continuum between fully compiled and fully interpreted
systems. This viewpoint is very important as the freedom offered to the user roles, the
backbone design complexity and the system’s overall performance strongly depend on the
compiled/interpreted ratio used in the framework’s design. Figure 2 right depicts this con-
tinuum: every horizontal band corresponds to a framework design type; for a given design,
the users’ roles (FD,CD,AD,EU) are placed with respect to the compiled or interpreted tech-
niques used for the implementation of their requirements. In practice, we distinguish six
main framework implementation classes, as follows.

1. Monolithic systems

This is the traditional style of programming an application as a monolith in which all re-
quirements are addressed and resolved on the same implementation level. There is no distinc-
tion between backbone and components, or between the users’ roles. The resulting systems
(hardly deserving the framework name) are very execution-efficient, straightforward to pro-
gram (usually a single executable written in a compiled language) but must be constantly
redesigned/recoded to account for new requests. They are often designed, maintained and
used by the same person.

2. Modular Systems

These systems separate the EU from the FD. The former can directly steer the system
via some interface or command language without knowing its implementation details, but he
still relies on the latter to redesign, recode (and recompile) the system to account for new
requirements. Most GUI-based / configuration file driven applications fall in this case.

3. Application Libraries

The first step towards reuse takes the form of application libraries, which are designed once
by the FD (mostly in compiled form) and used by ADs to produce different applications
for the EUs. Object-oriented techniques increase the reusability of such libraries. There is
usually no distinction between the CD and AD, as they represent the same person using the
library.

4. Compiled Component-Based Frameworks

As application libraries keep growing e.g. by adding new classes, designers notice that these
can be separated into a reusable fixed part, coding the domain-dependent infrastructure and
possibly some control logic, and a variable part, i.e. the new classes added to satisfy the
users’ increasing demands. The fixed part becomes the framework backbone, designed once,
by the FD. The variable part contains the open set of classes raised to the rank of compo-
nents, as they get a more formal (but also more flexible) interface for interaction with the
backbone. The CD role emerges as a mediator between the fixed backbone and the AD’s
variable demands. In the simplest version, such frameworks come as compiled applications:
components can be designed relatively easily, but a running application needs recompilation
to change existing components or add new ones.

5. Dynamic Component-Based Frameworks

Dynamic component frameworks extend compiled frameworks by allowing dynamic load-
ing of component types. Components are still not modifiable in the running application,



but new ones can be designed off-line and loaded in the (already running) framework. The
AD role is emphasized by the appearance of application development environments, in which
applications can be built interactively by visually assembling precompiled components. Ex-
amples range from simulation and visualisation [14, 15, 19] to data processing systems [5].
Applications are often no longer compiled, but interpreted in a run-time language which calls
back on the compiled components. The main problem of such dual-language frameworks
is that the component development (compiled) language often differs from the application
(interpreted) language. This makes difficult to map constructs in one language to the other,
so CDs may have difficulties passing their work to the ADs. Several ad-hoc techniques are
used for interfacing the two languages (practically designing the system’s hot spots), mainly
trying to simulate run-time typing and reflection using components created in a compile-time
typed language. Among these we note Java, tcl [15] or Objective C class wrappers for C++
[19], exemplar implementations, adapter classes generating parallel hierarchies [18], run-time
type information, etc.

6. Single Language Frameworks

Single language frameworks remove most of the problems of dual-language ones. The compo-
nent development language coincides with the application specification one, so the framework
directly accepts the supplied components (the hot spots do not have to do a language map-
ping). CDs and ADs can often use the same language in interpreted mode to dynamically
define types and build applications at run-time and features like dynamic component load-
ing or just in time compilation, so the role transition becomes easier. Examples of single
language frameworks are Java Beans based systems, the ROOT data processing system [5],
or the development environment described by Meyer in [17]. Extreme examples are frame-
works based on fully interpreted or typeless languages, like Smalltalk or Lisp. These incur
however performance problems and are not attractive for CDs having to reuse compiled (e.g.
C/C++/Fortran) legacy code.

6: A Case Study on Component Based Frameworks

Choosing the right backbone implementation out of the ones presented in the previous sec-
tion crucially determines how the framework will meet the users’ expectations. We conclude
our ”framework” for framework design by presenting three frameworks with different archi-
tectures, emerged from the analysis of different application domains and user requirements
on the model presented so far.

6.1 A Framework For Schematic Capture

This framework for electronic design automation (EDA) converts graphical representations
of electronic circuit designs into a hardware description language for analogue and mixed
signal (VHDL-AMS). The schematic capture system allows the CD to model new component
types. This is usually done by by aggregation (building larger components from smaller ones)
but languages such as VHDL-AMS also allow behavioural modelling, where components can
be described in terms of code-specified behaviour. Circuit designers using a schematic capture
system thus need a facility for describing new components both behaviourally (in VHDL code)
and visually (using GUI tools, see Fig. 4). In our framework, new components are described
dynamically at run time. The three key elements of the system are:

• Framework Backbone: this provides the means for instantiating and connecting
objects representing electronic components, and the core algorithms for circuit analysis



and VHDL code generation.
• Basic Components: these are the basic set of electronic components used by most

designers (e.g. various digital gates and standard analogue components such as resistors
and capacitors).

• Additional Components: these are provided at run-time by the user who can de-
scribe them via a visual object building GUI providing the context for behavioural
modelling.

Referring to the development phases in Section 4, we identify the following steps:
1. Identification of the requirements a schematic capture system within domain of EDA.
2. Framework backbone development, including the hot spots where component objects plug
in. This includes adding visual images to the library and appropriate syntax for code gener-
ation.
3. Development of the basic library of electronic components
4. Development of additional electronic component models using a run time extensibility
mechanism. Since this mechanism is also available at compile time, these components can be
developed by the CD, the AD or the EU (these roles overlap).

The system supports dynamic extensibility via a standard ’Component’ interface supported
by meta data that allows flexible component configuration. There is no need to compile the
new classes, as the run time system interprets configuration data dynamically to provide
different behaviours for different component types. The Component interface (Fig. 3 a) is
provided via a single class rather than an inheritance hierarchy. This is though supported

Application

Numerical Control
Component (BC)

Backbone: 
Communication and 
Synchronisation Subsystem

Transfer System
control Component
(AC)

Robot Control
Component (BC)

PLC Component
(BC)

:Component

behaviours

Creates objects of 
a single configurable 
domain class

Objects are created with 
a ’virtual constructor’

Meta object

data repository

Supporting 
polymorphic 
hierarchies 
and meta 
objects

Component* comp = new Component(id)

(b) Industrial control framework(a) Schematic capture framework

Figure 3.

by other polymorphic classification hierarchies at a lower granularity level, configured by
data provided by another object. Since this data can be changed and extended dynamically,
component instances can be provided with new behaviours at run time. Summarising, the
need of run-time, flexible configurability determines a single-language, dynamic architecture
(type 6 in Section 4).



Figure 4. Electronic design automation framework GUI

6.2 An Interactive Scientific Simulation and Visualisation Framework

Insight in complex physical processes requires integration of scientific visualisation and
numerical simulation in a single interactive framework. The presented framework [16] pro-
vides simulation description, parameter input, computation, and visualisation phases. ADs
can build simulations visually by assembling a set of icons (Fig. 5 a) representing user-
programmable OO components in a data-flow network (Fig. 5 b) EUs steer these applications
by several GUIs (Fig. 5 f). and visualise the results interactively (Figs. 5 c,d,e) show several
medical imaging visualisations).

• Framework Components: the component notion extends the C++ class concept
with dataflow semantics, adding notions as inputs, outputs (through which data is
exchanged with other connected components), and an update method (called by the
backbone when the component inputs’ change). CDs write C++ classes and then
interface them with the framework by writing a set of metaclasses (OO entities in
a simple declarative meta-language actually being the components). This makes any
C++ class hierarchy integrable in the framework without adapting its code at all. There
are no basic and additional components, but several component libraries for several
application areas (scientific visualisation, finite element analysis, image processing, 3D
graphics, etc).

• Framework Backbone: the backbone (Fig. 5 left) has a metaclass parser and C++
interpreter and can dynamically load application libraries with the metaclasses and
the C++ compiled classes they extend. The loaded components are shown as icons in
a visual browser and are automatically given GUIs reflecting their input and output
types. When a component input is changed, the backbone traverses the network passing
the data from outputs to inputs and calls the components’ C++ update methods, via
the C++ interpreter.
Computer simulation and visualisation is a good example of an application domain
where uses can and should easily change roles, as the entire pipeline from CD to and in-
cluding the EU deals with an experimental area, where neither the algorithms (mapped
to components), the application (mapped to the components’ assembly), or the applica-
tion settings (mapped to the component parameter run-time values) are stable or fixed
for long periods. The challenge here is, as also in the previous example, to allow for an



easy role transition, and the solution is similar, i.e. user interface tools supporting the
run-time control, assembly, and (in the previous example) definition of components.

e

f

c

a

b

d

Metaclass
   Parser

     C++
Interpreter

Component Library Loader

library 1 library 2

   GUI 
Manager

Control
 Kernel

GUI modified/ update 
                         events GUI update actions

execute C++ code

return value

request metaclass info

return info

execute
compiled C++load metaclasses

metaclasses and
     compiled C++ 
     classes loaded

execute 
compiled 
C++

Framework Backbone

Figure 5. Visualization/simulation framework backbone

This framework falls between single and dual-language systems, as it uses a mix of compiled
and interpreted C++ code and metaclass interfaces. Its main novelty is its flexible way to
merge compiled/interpreted C++ with dataflow concepts thus combining C++’s developer-
level advantages with end-user-level advantages such as interactivity and visual dataflow
programming. In this sense, the systems’ hot spots are practically the typing systems of the
interpreted C++ and the metalanguage.

6.3 A Framework for Industrial Control Systems

Our third example is a framework for industrial control systems development [10] which al-
lows building multitasking applications for control systems (Fig. 3 b). Different customisable
control components (robot control, programmable logic circuits (PLC), numerical control)
are provided to control the real devices. Other additional control components (e.g. transfer
system control) may be added. The framework’s elements are:

• Framework Backbone: this coordinates the control system tasks (application pro-
grams) and provides a virtual communication interface for its components. These com-
municate via this interface by reading the current data from the controlled devices and
calling methods to send commands to the devices. The backbone exchanges the data
with the real devices and provides for running application programs in real time.

• Basic Components: these are all the components necessary to control a simple pro-
duction cell with robot arms, digital devices, and numerical systems. Basic components
are adapted to the specific characteristics of the controlled devices (e.g. the robot arm
dimensions).

• Additional Components: these offer new control methods outside the basic set and
may use basic components (e.g. a transfer system component using the PLC basic
component.



7: Comparison with Earlier Work

Various authors describe framework design as a reverse engineering similar to pattern
mining, by factoring out commonalities from a few domain specific solutions [9]. Once it
exists, a framework is used to forward engineer further solutions within the same domain.
Role analysis usually makes a clear difference between the FD,AD and EU, seen as acting
on different achitectural layers. The FDs and ADs are involved with its architectural details
whereas EUs are thought to treat the end product as any other software piece. This has two
major limitations. First, there is an assumption that a framework is simply an implementation
or design tool. However, the framework architecture’s inherent flexibility may be explicitly
exploited also into the final product. Second, white box frameworks limit their extensibility
to CDs and ADs as they rely on code source level tools for extension. A better way would
be a black box design carried through to the EU role, yielding a high configurability via a
common interface at all development stages and an easy role transition. By role analysis, we
recognise that various actors have various requirements targeting the basic framework but
that these activities can overlap and communicate. Rather than fixing development phases
where a CD or AD close an open framework, we advocate frameworks providing extensible,
ideally implementation detail free interfaces for all actors, including EUs. Behaviours may
be changed by ’horizontal’ meta level interfaces [8](e.g. visual tools or scripting languages).

8: Summary and Conclusions

The presented ’framework for framework design’ depends on a ’logical pipeline’, which
starts at the EU’s requirements, passes through the AD’s and CD’s ones, and finally focuses
the burden on the FD. The component interface requirements determine the right ’mix’
between compile-time and run-time system parts to be implemented by the FD. Several ap-
plication domains can thus be satisfied by designing several frameworks, all being in fact
instances of the same ’meta-framework’. In each case the FD identifies a unique component
interface appropriate to the domain. We can be specific by examples only (e.g. our case stud-
ies), as the requirements’ range is too large to offer general solutions. The union of the users’
requirements however induces essential guidelines for a framework design and implementa-
tion with optimal cost/benefits. For example, a need to create new instances at run-time
asks for a basic interpreter with type instantiation capabilities. Introducing new types at
run-time asks for an interpreter capable of dynamic type-loading. If new types introduce
new code at run-time, a run-time system support for dynamic code loading is needed. In
the extreme case when the border between compiled and interpreted systems vanishes, we
may need incremental/on-the-fly compilers, single hierarchy (meta-type based) languages,
etc. An important risk in the backbone design is the wrong or under-evaluation of the user
requirements and thus providing a simpler, but too weak implementation. Many framework
implementations revolve around the compiled and dynamic component-based architectures
shown in Section 5, offering more or few ’ad-hoc’ run-time component instantiation, typing,
or loading features. However, in many cases the user requirements are just above the flex-
ibility limit offered by such framework mechanisms (but usually never above the flexibility
of e.g. a programming language’s modelling power). FDs should realize in this case that a
backbone implementation conforming with the user requirements might better be a single
language one. Numerous FDs prefer however not to incur the implementation complexities
or speed drawbacks of single language systems and thus choose for a simpler one. This can
however have limitations showing up after the framework backbone is completed and frozen,
usually causing complex adapter schemes to be coded atop of the existing backbone. The
more ’loosely coupled’ the component-framework communication/interface is, the easier is
everything for all the user categories, as we limit the strategic design decisions to the back-
bone alone. Simply put, the FD must implement a backbone that satisfies the component
interface(s), derived from the union of the user specifications.



References

[1] G. Booch, Object-Oriented Analysis and Design, Benjamin/Cummings, Redwood City, CA, second
edition, 1994.

[2] W. W. Royce, Managing the Development of Large Software Systems: Concepts and Techniques, Pro-
ceedings IEEE WESTCON, Los Angeles, 1-9.

[3] S. Demeyer et al., Design Guidelines for ’Tailorable’ Frameworks, Communications of the ACM, Vol.
40, No.10, Oct. 1997, pp. 60-65.

[4] R. P. Gabriel, Patterns of Software - Tales from the Software Community, Oxford University Press,

New York, 1996.

[5] R. Brun, S. Rademakers ROOT - An Object Oriented Data Analysis Framework, Proceedings AI-

HENP’96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. & Meth. in Phys.Res. A 389 (1997)

81-86. See also http://root.cern.ch/.

[6] R. E. Johnson, Frameworks = (Components + Patterns), Communications of the ACM, Vol. 40,

No.10, Oct. 1997, pp. 39-42.

[7] D. L. Parnas, On Criteria to be Used in Decomposing Systems into Modules, Communications of the

ACM, Vol. 15, No.12, Dec. 1972, pp. 1053-1058.

[8] T. Mowbray, R. Malveau, CORBA Design Patterns, Wiley, 1997.

[9] D. Roberts, R. Johnson, Patterns for Evolving Frameworks, in Pattern Languages of Program Design
3, R. Martin et al (eds.), Addison-Wesley, 1998.

[10] H. Schmid, Design Patterns to Construct the Hot Spots of a Manufacturing Framework, in The Patterns
Handbook: Techniques, Strategies and Applications, L. Rising (ed.), Cambridge University Press,

1998.

[11] I. Sommerville, P. Sawyer, Requirements Engineering: a Good Practice Guide, John Wiley and

Sons, 1997.

[12] J. O. Coplien, Advanced C++ Programming Styles and Idioms, Addison-Wesley, 1992

[13] J. Wernecke, The Inventor Mentor: Programming Object-Oriented 3D Graphics with Open Inventor,
Addison-Wesley, 1993.

[14] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz, and

A. van Dam, The Application Visualization System: A Computational Environment for Scientific Visu-
alization., IEEE Computer Graphics and Applications, July 1989, 30–42.

[15] W. Schroeder, K. Martin, B. Lorensen, The Visualization Toolkit: An Object-Oriented Approach
to 3D Graphics, Prentice Hall, 1995

[16] A.C. Telea, C.W.A.M. van Overveld, An Object-Oriented Interactive System for Scientific Simula-
tions: Design and Applications, int Mathematical Visualization, H.-C. Hege and K. Polthier (eds.),

Springer Verlag 1998

[17] B. Meyer, Object-oriented software construction, Prentice Hall, 1997

[18] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995

[19] C. Gunn, A. Ortmann, U. Pinkall, K. Polthier, U. Schwarz, Oorange: A Virtual Laboratory for
Experimental Mathematics, Sonderforschungsbereich 288, Technical University Berlin. URL

http://www-sfb288.math.tu-berlin.de/oorange/OorangeDoc.html


