
Appendix

Visualization Software

ONE important element of the five-dimensional classification model for visu-

alizations presented in Section 4.3 was the medium, or type of drawing

canvas that the rendering takes place on. There are many examples of early

visualizations that use paper as the medium [Spence 07]. Modern architectural

blueprints can also be seen as visualizations that use a printed medium. Yet, by

far the largest class of visualization applications described in this book have one

thing in common: they use the computer screen as a medium.

Using the computer to do data visualization is a natural choice from several

points of view. First, many visualization scenarios are, by their very nature, ex-

plorative. This makes interactive visualization tools the best instruments for such

cases. Second, the datasets to visualize usually come in electronic form. Third,

the large amounts of data, or dynamically changing datasets, make computer-

based visualization tools again the natural choice.

In this appendix, we provide an overview of a number of issues concerning

visualization software. First, we discuss how visualization software can be clas-

sified from an architectural perspective (Section A.1). Next, we provide a list

of several representative visualization systems for scientific, imaging, and infor-

mation visualization data, in order to illustrate the various flavors of systems

available to practitioners.

A.1 Taxonomies of Visualization Systems
Visualization software tools are central to creating successful visualizations. Be-

sides the provided functionality, such systems have also to cover several non-

555



556 Appendix: Visualization Software

functional requirements in order to be effective. Relevant attributes in the latter

group include the following:

• Efficiency: The software should produce visualizations quickly. This can

mean minutes for some applications, but fractions of a second for others,

such as interactive applications.

• Scalability: The software should be able to handle large datasets within

given performance and resource bounds.

• Ease of use: The software should provide an easy-to-learn-and-use interface

for its intended user group.

• Customizability: The software should allow a simple and effective way to

customize it for specific tasks, scenarios, problems, or datasets.

• Availability: The software should be available to its intended user group

under specific conditions (e.g., license and platform).

Modern visualization applications are complex software systems containing

tens or hundreds of thousands of lines of code organized on several layers. With

respect to this layered application architecture, the users can have different roles.

One such classification identifies three roles: end users, application designers, and

component developers [Ribarsky et al. 94]. End users are the final customers of a

visualization application, and use it to obtain insight into a given dataset, typi-

cally by means of customized user interfaces that support domain-specific tasks.

Such applications are also known as turnkey systems. Application designers

construct turnkey systems for the end users, typically by assembling a set of pre-

made software components and providing them with the needed configuration

and user-interface elements. Finally, component developers program software

components that implement visualization algorithms and datasets, and provide

these to application designers as ready-made visualization software packages or

libraries.

From this perspective, visualization software can be classified into three

classes: libraries, application frameworks, and turnkey systems. Libraries pro-

vide application programmer interfaces (APIs) that contain the data types and

operations that constitute the basic building blocks of a visualization applica-

tion, such as the ones presented in Chapter 3. At the other end of the spectrum,

turnkey systems provide custom user interfaces, presets, and configurations de-

signed to support specific tasks. Application frameworks fall between these two

extremes. They encode a set of fixed domain-specific rules, operations, and



A.2. Scientific Visualization Software 557

functions as a backbone to which an open set of components can be added. The

components use the backbone to interact and provide functionality at a higher

level, and in a more compact way, than bare libraries. Several mechanisms exist

for adding components to the framework and composing them in. A popular

design metaphor presents the components to the application designer in a vi-

sual, iconic form. Applications are constructed by interactively assembling these

iconic component representations. This allows nonprogrammers to quickly and

easily prototype new applications without programming. The AVS, ParaView,

and VISSION applications illustrated in Figures 4.6, 4.9, and 4.8 in Chapter 4

are examples of application frameworks.

In the next sections, we give several examples of visualization software sys-

tems used in practice. Instead of using an architectural taxonomy into libraries,

frameworks, and turnkey systems, we have opted for a domain-centered tax-

onomy into three classes: general scientific visualization systems (Section A.2),

medical and imaging systems (Section A.3), and information visualization sys-

tems (Section A.5). Given the size of the field and the rapid rate at which new

software is produced, the list of systems presented here is definitely not exhaus-

tive and limited in choice. However, we believe that this list can serve as a

useful starting point for the interested reader in search for a given visualization

software tool or component.

A.2 Scientific Visualization Software
The systems listed in this section fall in the category of general-purpose scientific

visualization software. The target of such systems is primarily the visualization

of datasets defined as two- and three-dimensional grids of various types with

scalar and vector attributes, such as created by scientific simulations or data-

acquisition processes. The main application domains targeted are engineering,

mechanics (both in research and in the industry), and weather and geosciences.

However, some of the systems provide also support for medical imaging, tensor

visualization, and information visualization.

The Visualization Toolkit (VTK)

Type: Class library (written in C++)

Availability: Open source

Address: http://www.kitware.com/vtk/



558 Appendix: Visualization Software

Description: VTK is a set of class libraries written in C++. Classes come in two main
flavors: datasets and algorithms. Dataset classes range from low-level
containers, such as lists and arrays, to full-fledged uniform, rectilinear,
structured, and unstructured grids. Several hundred algorithm classes
provide grid manipulation, slicing, interpolation, contouring, stream-
lines, image processing, polygonal and volume rendering, and informa-
tion visualization techniques for graphs and table datasets. VTK is
arguably one of the leading data visualization libraries at the moment.

Utilization: Applications are built by assembling dataset and algorithm class in-
stances into a pipeline. This is done either via the native compiled
C++ API or its wrappings in interpreted languages, such as Python,
Java, Tcl, and recently also .NET. The basic VTK building blocks offer
a wide functionality. Yet, constructing a complete visualization appli-
cation, and even more so extending VTK with one’s own algorithms,
requires a fair amount of programming effort and knowledge of the VTK
API and its programming paradigms.

MeVisLab
Type: Turnkey system/application framework

Availability: Restricted open source (written in C++)

Address: www.mevislab.de/

Description: The MeVisLab system can be used as an end-user tool for processing
and visualizing scientific datasets. Its main operation mode is very sim-
ilar to AVS/Express, IRIS Explorer, and SCIRun (described below). A
visual editor allows assembling a dataflow network from existing compo-
nents available in a number of application-specific libraries. Component
parameters can be controlled by customized GUIs or by direct interac-
tion in the available 2D and 3D viewers. One of the main strengths
of MeVisLab is the huge number of available components, provided by
the core software itself, third-party community developers, but also the
integration of VTK, ITK, and Open Inventor visualization and graphics
libraries within a single framework. As such, MeVisLab’s functionality
covers extensively scientific visualization, volume/medical visualization,
and image processing. Several components, such as volume processing
and volume rendering, benefit from optimized GPU implementations.

Utilization: MeVisLab operates mainly as an end-user system. The application de-
sign freedom is slightly smaller than in systems such as AVS/Express
or IRIS Explorer, but higher than in ParaView or MayaVi. Carefully
designed user interfaces and a comprehensive documentation make the
system easy to learn and use, and especially suited for educational, rapid
data exploration, or demonstration scenarios. Modules can be added via



A.2. Scientific Visualization Software 559

a plug-in mechanism, and are actively contributed by the open source
community. MeVisLab comes with mainly two license types. The free
license offers unrestricted use for research and academic purposes, but
a restricted set of features. The paid license is further split into a full-
feature variant for nonprofit organizations, and a full-feature variant for
commercial usage.

AVS/Express
Type: Application framework

Availability: Commercial

Address: www.avs.com/solutions/express/

Description: AVS/Express is an application framework for development of high-end
scientific visualization solutions. AVS/Express provides more than 800
visualization building bricks (algorithms) that cover scalar, vector, and
tensor visualization on several types of grids, much like VTK. Several
extensions of AVS/Express provide support for parallel processing and
high-end virtual-reality visualizations. Some extensions also target in-
formation visualization (OpenViz toolkit), operational industrial moni-
toring (the PowerViz toolkit), and scientific presentation graphics (the
Gsharp toolkit). A snapshot of the AVS tool in action is shown in Fig-
ure 4.8.

Utilization: Applications are built by assembling premade components into a pipeline,
somewhat similar to the VTK paradigm. This can be done programmat-
ically in C or C++, or interactively, via a point-and-click visual appli-
cation designer. The visual editor allows rapid application prototyping,
user interface construction, and application steering. The AVS/Express
components are less fine-grained than VTK classes, for example.

IRIS Explorer
Type: Application framework

Availability: Commercial

Address: http://www.nag.co.uk/welcome\ iec.asp

Description: IRIS Explorer is an application framework for development of high-end
scientific visualization solutions. Its user group and philosophy is quite
similar to AVS/Express. The provided visualization functionality cov-
ers application domains as varied as life sciences, chemistry, medical
imaging, geology, financial modeling, and aerospace engineering. IRIS
Explorer builds its versatility on top of several major software com-
ponents, such as the well-known Open Inventor 3D and ImageVision



560 Appendix: Visualization Software

graphics libraries and the Numerical Algorithms Group (NAG) numeri-
cal libraries. IRIS Explorer is particularly attractive for users who wish
to combine numerical simulation code with visualization facilities.

Utilization: IRIS Explorer provides a visual application builder based on a dataflow
application architecture, much like AVS/Express. Modules can be de-
veloped in C, C++, and FORTRAN, but also in a proprietary scripted
language called SHAPE, which offers an easier way to manipulate com-
plex n-dimensional datasets. Modules are next visually assembled in
so-called maps, which are essentially dataflow networks.

SCIRun
Type: Application framework

Availability: Open source

Address: http://software.sci.utah.edu/scirun.html

Description: SCIRun is an application framework developed for the creation of sci-
entific visualization applications. SCIRun is very similar in aim and
scope to AVS/Express. It provides a set of modules for scientific data
visualization that can be connected into so-called networks, following a
dataflow application architecture. SCIRun has been used to construct
visualization applications for several domains such as finite element nu-
merical simulations, (bio)medical imaging, and computational steering.

Utilization: Similar to AVS/Express, SCIRun allows applications to be constructed
visually, by editing the dataflow network, or programmatically. Once
constructed, applications can be packaged into so-called PowerApps.
These are dataflow networks provided with custom user interfaces into
turnkey applications that facilitate specific exploration scenarios. Sev-
eral such PowerApps are available for different domains, such as segmen-
tation (Seg3D), tensor visualization (BioTensor), volume visualization
(BioImage), and finite element problems (BioFEM). All in all, SCIRun
is a mature environment that covers most needs and requirements of the
users of a scientific visualization framework.

ParaView
Type: Turnkey system/application framework

Availability: Open source

Address: http://www.paraview.org/

Description: The ParaView system can be used as an end-user tool for visualiz-
ing scientific datasets. The main operations for data filtering, selec-
tion, mapping, and rendering are provided, such as slicing, isosurfaces,



A.3. Imaging Software 561

streamlines, and interactive viewing. ParaView provides an intuitive
and simple graphical user interface that allows one to both prototype
a visualization application and set its various parameters interactively.
ParaView is built on top of the VTK class library. The user interface
layer is written in the Tcl/Tk scripted languages. Most of the illustra-
tions used in this book were created using ParaView, unless otherwise
specified in the text.

Utilization: ParaView operates mainly as an end-user system. The application de-
sign freedom is considerably less involved, but also easier to learn, than
AVS/Express, for example. ParaView makes an excellent system for
learning the basics of scientific visualization without having to be a
programmer. Only the core VTK functionality is exposed in the user
interface. However, developers can add new modules to the ParaView
user interface using a mix of Tcl, C++, and XML wrappers.

MayaVi
Type: Turnkey system/application framework

Availability: Open source

Address: http://mayavi.sourceforge.net/

Description: The MayaVi system is an end-user tool for visualizing scientific datasets.
Its architecture, provided functionality, and intended user group are very
similar to ParaView’s. MayaVi is also built as an interactive front-end
on top of the VTK class library. However, in contrast to ParaView,
MayaVi uses Python as a scripted (interpreted) language to bind user
interface functions to the compiled C++ libraries.

Utilization: MayaVi operates mainly as an end-user system, similar to ParaView.
The user interface is structured differently. A relatively greater emphasis
is put on executing operations by writing Python commands at a user
prompt than via the user interface itself. The user interface exposes
more of the VTK implementation details and is relatively lower-level
than the one of ParaView. Overall, although MayaVi and ParaView are
quite similar in intention, we find ParaView easier to learn and use and
more mature than MayaVi.

A.3 Imaging Software
In this section, we list a number of imaging software systems. By “imaging,” we

refer to several functionalities related to the manipulation and visualization of

2D and 3D image datasets. Such datasets occur frequently in medical practice



562 Appendix: Visualization Software

as the output of the various scanning technologies, such as computed tomogra-

phy (CT) and magnetic resonance imaging (MRI). Image datasets can contain

scalar, vector, and tensor data. Imaging operations cover a wide range of tasks,

such as basic data handling and manipulation, basic image processing, image

segmentation and registration, shape recognition, image visualization, and vol-

ume rendering. Just as for the other types of software systems listed in this

appendix, it is not possible to cover all aspects and variants of such systems, so

we limit ourselves to a small selection of representative systems.

The Insight Toolkit (ITK)
Type: Class library (written in C++)

Availability: Open source

Address: http://www.itk.org/

Description: ITK is a set of class libraries written in C++. The main functionality
targeted by the ITK toolkit is divided into three categories: image pro-
cessing, segmentation, and registration. As such, ITK does not provide
visualization (rendering) and user interface facilities. However, ITK can
be combined with other toolkits, such as VTK, in order to construct
complete visualization applications.

Utilization: The software structure of ITK bears a number of similarities to VTK,
which is not surprising given the fact that a large number of common or-
ganizations and people have been jointly involved in the development of
both toolkits. ITK comes with a considerable amount of documentation
in the form of books, courses, online material, examples, and demos.
Also, the source code of several medical imaging applications built on
top of ITK is available for downloading from the ITK site. However,
just as for its older cousin VTK, using ITK to construct an imaging ap-
plication requires a nonnegligible amount of effort, given the sheer size
and complexity of the toolkit APIs.

3D Slicer
Type: Turnkey system/application framework

Availability: Open source

Address: http://www.slicer.org/

Description: 3D Slicer is a freely available, open-source application framework for
visualization, registration, segmentation, and quantification of medical
data. 3D Slicer supports a wide array of tasks, ranging from the in-
vestigation and segmentation of volumetric CT and MRI datasets to



A.3. Imaging Software 563

providing the basic mechanisms for more complex applications, such as
guiding biopsies and craniotomies in the operating room and diagnostic
visualizations. 3D Slicer can handle scalar, vector, and tensor data at-
tributes. In particular, several functions for visualizing diffusion tensor
images, such as principal component analysis, tensor color coding, ten-
sor glyphs, and hyperstreamlines are supported. 3D Slicer is supported
by a large number of organizations, and is used in a large number of
research projects, as well as in clinical studies and actual applications
in the medical practice. Several images created with the 3D Slicer tool
are shown in Section 7.6.

Utilization: 3D Slicer has an architecture consisting of an end-user front end and a
framework that manages a set of application libraries. The front end pro-
vides user interfaces and direct mouse-based manipulation of the data,
such as picking, probing, and interactive streamline seed placement.
The application framework allows one to add new plug-ins in order to
provide custom-developed functionality. The 3D Slicer architecture was
designed to facilitate adding a wide variety of plug-ins, ranging from
standalone binaries (executables and shared libraries) to modules based
on the VTK and ITK toolkits and even shell, Tcl, and Python scripts.
Although this makes learning the software architecture of 3D Slicer more
complex than that of other toolkits such as VTK or ITK, it also makes
3D Slicer more flexible in interfacing with a broad spectrum of third-
party software components.

Teem

Type: Turnkey/libraries

Availability: Open source (written in C)

Address: http://teem.sourceforge.net/

Description: Teem is a set of coordinated libraries representing, processing, and vi-
sualizing scientific raster data. Teem provides functions that support a
wide range of operations on n-dimensional raster data (uniform grids)
of m-dimensional attributes. The functions of Teem are provided as a
set of standalone executables designed much like UNIX filters, which
are parameterized by command-line options. The generic data model of
Teem, together with the modular decomposition of operations in terms
of several filters, allows many complex operations on image volumes to
be specified easily and compactly. The set of basic operations provided
by Teem include convolution, slicing, resampling, interpolation, statis-
tics, principal component analysis for tensors, color mapping, volume
rendering, and tensor glyph visualizations. Several images created us-
ing the Teem software are shown in Section 7.5.



564 Appendix: Visualization Software

Utilization: Data-processing and visualization tasks are typically written as shell
scripts that construct and execute a dataflow pipeline by cascading the
Teem basic filters. This is the easiest and most rapid way to use Teem
to produce visualizations. If desired, Teem can be also used in terms of
libraries providing APIs. Teem is not end-user software. As such, it does
not provide user interface or interaction functions present in complete
visualization applications. However, its generic, modular, and coherent
API design allow such applications to be built on top of it. For example,
the SCIRun and 3D Slicer applications integrate the functionality of
Teem to provide high-level imaging capabilities.

ImageJ

Type: Turnkey

Availability: Open source (written in Java)

Address: http://rsbweb.nih.gov/ij/

Description: ImageJ is an application conceived for the easy processing of 2D images.
Inspired by classical 2D image manipulation programs, ImageJ offers a
wide set of basic image processing operations, such as contrast enhance-
ment, smoothing, sharpening, denoising, edge detection; advanced im-
age processing such as segmentation and manipulating stacks of 2D im-
ages, image sequences, or separate channels of the same image; and com-
puting various image statistics and measurements, such as histograms
and image calibration. Written in Java, ImageJ is optimized for the
efficient processing of large images, using multithreading.

Utilization: In typical end-user mode, ImageJ offers its processing capabilities via
GUIs and a range of direct selection and manipulation tools. Basic func-
tionality is extendable via a relatively easy-to-use plug-in Java interface.
As such, hundreds of third-party plug-ins has been developed for ImageJ
for both general-purpose image processing but also for specialized ma-
nipulation of various types of microscopy, biology, and medical images.
Basic operations can be composed in so-called macros by using a built-in
scripting language. Given the rich set of available plug-ins, ImageJ is a
very competitive alternative to MATLAB for 2D image processing.

Binvox

Type: Turnkey utilities

Availability: Open source (written in C/C++)

Address: http://www.cs.princeton.edu/∼min/binvox



A.3. Imaging Software 565

Description: Binvox is a set of command-line utilities for the conversion of 3D polyg-
onal meshes to volumetric formats. The main utility of this toolset
is binvox, a program for converting polygonal meshes in a variety of
formats (such as Stereo Lithography (STL), Stanford Polygonal File
Format (PLY), Object File Format (OFF), Virtual Reality Modeling
Language (VRML), and Drawing Interchange Format (DXF)) to 3D bi-
nary uniform voxel volumes. Conversion works best for closed orientable
meshes. The output volumes are available in several formats, such as
raw binary, VTK, Heritable Image Processing Format (HIPS), and Mim-
icking Intelligent Read Assembly (MIRA). Apart from voxelization, the
toolset also provides a tool for extracting curve skeletons from binary
volumes (thinvox) and a tool for converting between a number of pop-
ular mesh formats (meshconv). While the mesh conversion features are
less powerful than those provided in related software such as MeshLab,
the voxelizer binvox offers a very easy to use, robust, and efficiently im-
plemented, way to convert a wide range of 3D meshes to binary volumes
up to 10243 voxels.

Utilization: binvox is offered as a set of command-line, UNIX-style, utilities that
read, process, and write mesh and voxel files. Command-line options
are simple and easy to learn and use. As such, these tools can be easily
integrated in third-party visualization applications or pipelines. The
source code of the toolkit is quite compact, platform independent, and
easy to read. This allows one to easily add extra input or output formats
and/or integrate it in more complex applications, if needed.

OpenVDB
Type: Class library

Availability: Open source (written in C++)

Address: http://www.openvdb.org/

Description: Open Volumes with Dynamic Topology, or OpenVDB, is a class library
that supports the efficient representation and manipulation of very large
voxel volumes. Designed in mind for handling very high resolution sparse
volumes, OpenVDB provides a set of sophisticated data storage, index-
ing, and manipulation operations that allow the processing of 3D voxel
volumes of thousands of voxels cubed or more. Operations are provided
for creating volumes from a variety of mesh and point cloud formats,
reading voxel volumes from third-party file formats, and processing vol-
umes via level set operations, computational solid geometry (CSG) op-
erations, mathematical morphology, and surface advection and track-
ing. Apart from these, operations are also provided for procedurally
compositing volumes and computing various differential quantities on
volumes (divergence, Laplacian, curl, and distance transforms). Results



566 Appendix: Visualization Software

can be exported to both voxel, point cloud, and mesh representations.
Support is also included for processing time-dependent volumes, which
allows coding various physical simulations that require volumetric do-
main representations.

Utilization: The main operation mode of OpenVDB is similar to VTK (described
above): Users write the intended volume processing scenario in as a
C++ program that calls the required functionality provided by Open-
VDB classes. Results can be visualized by a number of viewer compo-
nents provided in OpenVDB itself, or exported to various point cloud
file formats. Similar to VTK, this offers a large freedom in building spe-
cialized scenarios, but also requires a non-trivial learning curve. While
the current focus of OpenVDB is to provide the lower-lever infrastruc-
ture required to build end-user applications for volume processing with
a focus on volumetric simulations, and less so for interactive volume
visualization and exploration, the evolution of OpenVDB will arguably
make it easier to use for more general volume processing and volume
visualization tasks.

A.4 Grid Processing Software
In this section, we overview several software systems that address the general

task of processing grids. Under the grid denomination, we include all discrete

representations of spatial domains which are formed by vertices connected by

various cell types. Following the domain modeling terminology introduced in

Chapter 3, we consider here software tools that process discrete representations

of 2D curved surfaces (mesh processing tools), unorganized point sets, and uni-

formly sampled 3D volumes (voxel processing tools). Given the wide variety of

such tools, the focus is here on tools which implement a comprehensive set of

typical operations present in grid processing such as resampling, reconstruction,

and filtering, rather than on more specialized tools that focus on a narrower set

of operations and/or grid types.

MeshLab
Type: Turnkey system

Availability: Open source (written in C and C++)

Address: http://meshlab.sourceforge.net/

Description: MeshLab is a general-purpose turnkey system for the analysis, process-
ing, and visualization of 3D polygonal meshes. Data can be imported
from mesh files in a variety of formats (such as Stanford (PLY), 3D



A.4. Grid Processing Software 567

Studio (3DS), Alias/Wavefront (OBJ), OFF, X3D, and VRML). Both
meshes including vertex and cell data, and unorganized point clouds
with no connectivity information can be processed. MeshLab includes a
large variety of processing operations, including but not limited to mesh
cleaning, repairing, simplification, refinement, smoothing and fairing,
and computing quality metrics. For point clouds, several algorithms are
provided for normals estimation, surface reconstruction, filtering, and
registration. MeshLab is continuously extended with recent reseach-
grade algorithms via a plug-in mechanism. This makes MeshLab one
of the best starting points for applying and/or comparing recent mesh
processing algorithms. However, given the rapid pace of development
of such algorithms, not all algorithms included in MeshLab have fully
optimized or entirely robust implementations. Also, a certain amount
of literature study and training is needed to understand the various
parameters of the included algorithms.

Utilization: MeshLab can be used much like a traditional image editor. After load-
ing mesh data from files, users can apply any of the provided algorithms
in immediate mode, examine the results in a built-in viewer, and re-
peat the process if desired. MeshLab does not offer the concept of a
computational pipeline, such as present in visualization tools such as
MayaVi or ParaView. However, this operation mode fits well the highly
interactive nature of many mesh processing scenarios, where the user
wants to carefully examine the results of each processing step before de-
ciding how and where (on the mesh) to apply the next step, and which
this step should be. The final results can be saved in a variety of mesh
file formats, compatible with the largest majority of mesh processing or
data visualization software tools.

PCL

Type: Class library

Availability: Open source (written in C++)

Address: http://pointclouds.org

Description: PCL (the Point Cloud Library) is a class library dedicated to the acquisi-
tion, processing, and visualization of point cloud datasets. Its core focus
is on supporting point cloud operations related to typical computer vi-
sion use-cases, such as the analysis of, and information extraction from,
point clouds acquired with 3D scanning devices such as laser scanners
or range cameras. However, PCL components can be also very useful
for a variety of operations on (large) point clouds in the context of data
visualization, such as point cloud cleaning and filtering, normal estima-
tion, spatial search, registration, segmentation, surface reconstruction,



568 Appendix: Visualization Software

and visualization. Similarly to MeshLab (described above), PCL con-
tains a large set of recent research-grade algorithms, which makes it a
valuable resource for the researcher or practitioner interested in testing
and/or comparing such algorithms. PCL is designed with scalability in
mind, and most of its components can efficiently process point clouds of
millions of data points.

Utilization: PCL is a class library, which implies that its users need to program
their applications using the provided APIs. Although these are very
flexible, learning PCL has a steep curve. The extensive use of non-
trivial C++ features and design patterns, and its design that relies on
fine-grained components, makes it suitable only for the versed C++
programmer, much like, for example, the Boost C++ library. As its
documentation uses a relatively more mathematical presentation angle
than typical class libraries, PCL developers should be at least familiar
with the main computational geometry concepts and terminology.

CGAL
Type: Class library

Availability: Open source (written in C++)

Address: http://www.cgal.org

Description: CGAL (the Computational Geometry Algorithms Library) is a class li-
brary that includes a wide set of algorithms dedicated to the processing
of point clouds and polygonal and volumetric meshes. In contrast to
MeshLab, for example, CGAL focuses on providing lower-level func-
tionality, or building blocks, that can be used in the development of
applications that need to process grids. Included components cover vir-
tually all well-known computational geometry algorithms, ranging from
simple spatial searches and intersection computations, Delaunay and
Voronoi diagram construction in 2D and 3D, alpha shapes, surface re-
construction, up to complex polygon and polyhedral decompositions,
mesh refinement, and surface parameterization. The design of the li-
brary makes extensive use of advanced C++ features such as templates
and traits. This makes it possible to parameterize the provided algo-
rithms in a variety of directions, such as choosing the space to work in,
interpolation type, or numerical approximations to use. CGAL comes
with high-quality documentation and an extensive example set, and is
actively maintained and used by a sizeable community. As such, it is ar-
guably the tool of choice for application developers requiring non-trivial
computational geometry functionality.

Utilization: The main operation mode of PCL is similar to VTK (described above):
Users write the intended point cloud processing scenario in as a C++



A.5. Information Visualization Software 569

program that calls the required functionality provided by PCL classes.
Results can be visualized by a number of viewer components provided
in PCL itself, or exported to various point cloud file formats. Similar
to VTK, this offers a large freedom in customizing specialized scenarios,
but also requires a non-trivial learning curve.

A.5 Information Visualization Software
Compared to scientific visualization systems, information visualization systems

come in a larger variety. There are fewer “generic” systems in this category that

can be compared to frameworks such as AVS/Express, SCIRun, or IRIS Explorer.

One reason is arguably the higher diversity of the application domains, data

types, and end user groups for information visualization systems. Consequently,

the selection of information-visualization systems presented next has even fewer

pretensions to be exhaustive than our selection of scientific-visualization systems.

The considered domains for this selection are graphs and trees, multivariate data,

and table data.

The Infovis Toolkit (IVTK)
Type: Class library/application framework

Availability: Open source (written in Java)

Address: http://ivtk.sourceforge.net/

Description: IVTK is a general-purpose toolkit for developing information-visualiza-
tion end-user applications and components. IVTK comes as a set of Java
class libraries implementing a number of core infovis methods, such as
scatter plots, time series, parallel coordinates, matrix plots, and several
types of graph and tree layouts.

Utilization: Developing applications with IVTK and VTK is quite similar. Both
are class libraries, so building an application requires programmatically
combining instances of the necessary datasets and visualization algo-
rithms. One of the features of IVTK is that it uses a generic dataset
model. All datasets (including relational ones) are represented as tables.
IVTK provides efficient representations for these tables both in terms
of memory and access time. However, just as for VTK, constructing
a full-fledged end-user application with IVTK requires a fair amount
of work and understanding of the toolkit design. Moreover, compared
to VTK, IVTK is relatively newer and less developed toolkit, which
provides only a small number of basic versions of the many infovis al-
gorithms that exist for the supported data types (e.g., tree and graph
layouts).



570 Appendix: Visualization Software

Prefuse
Type: Class library/application framework

Availability: Open source (written in Java)

Address: http://prefuse.org/

Description: Prefuse is a toolkit for constructing information-visualization applica-
tions, and is quite similar to IVTK. The toolkit comes as a set of Java
class libraries that provides support for representing the main types of
datasets used in information visualization, such as trees, graphs, and
tables. Together with these, a number of fundamental algorithms for
constructing infovis applications are provided, such as graph and tree
layouts, glyphs, dynamic queries, brushing, search, database connectiv-
ity, and animation.

Utilization: Prefuse is both a class library and an application framework. Function-
ality and data representation are provided in terms of classes. Program-
ming interaction, correlation between multiple views, and application
execution is provided by means of framework services. In this respect,
prefuse is similar to the VTK and IVTK toolkits. However, the archi-
tectures and internals of the two toolkits are quite different. A VTK
application is structured like a dataflow pipeline. In prefuse, the ac-
cent is laid more on connecting data and processing items via actions
and events. All in all, prefuse is a good start to learn experimenting
with information-visualization concepts and algorithms via prototyping.
However, the toolkit does not yet have a wide palette of implemented
algorithms, which is similar to IVTK. Also, the scalability and efficiency
of the implemented algorithms cannot yet cope with truly large datasets.

GraphViz
Type: Library and turnkey system

Availability: Open source (written in C)

Address: http://www.graphviz.org/

Description: GraphViz is a high-quality library for computing and displaying graph
layouts. GraphViz implements several popular graph-layout algorithms
such as rooted and radial trees, hierarchical directed acyclic graph lay-
outs, and force-directed layouts. In addition to layout, GraphViz of-
fers advanced control of the mapping and rendering of graph nodes and
edges, including annotations, spline edges, and nested graphs. An exten-
sive set of options allows one to specify the finest details of the layout
and mapping. Its robustness, scalability, simplicity of use, and avail-
ability have made GraphViz one of the best-known toolkits for laying



A.5. Information Visualization Software 571

out graphs and quickly producing quality graph visualizations. Several
graph visualizations created with the GraphViz software are shown in
Section 11.4.2.

Utilization: GraphViz is structured as a set of separate executables. These read and
write graph specification files in various formats. These executables can
be easily used as turnkey systems to load, lay out, and draw graphs. In
addition to these, GraphViz also provides an API that allows more flexi-
ble access to the layout functionalities. This allows one to use GraphViz
as a layout library on behalf of other applications.

Tulip
Type: Library and turnkey system

Availability: Open source (written in Java)

Address: http://www.tulip-software.org/

Description: Tulip is a framework for the manipulation and visualization of large
graphs. At the core of the Tulip system is an efficient data represen-
tation that allows manipulation of graphs with more than one million
elements. The Tulip framework contains a core library and an end-
user visualization tool. The library provides graph data representation
and so-called algorithms. The algorithms include several layout engines
(rooted, radial and bubble trees, treemaps, and force-directed) and ren-
dering engines that allow one to parameterize the node and edge glyphs
by graph data attributes. Apart from these, several graph data manip-
ulation algorithms are provided, such as editing, clustering, decompo-
sition, and computing statistics on graphs. Several tree visualizations
created with the Tulip system are shown in Section 11.4.1.

Utilization: Tulip can be used either as a C++ class library or as a turnkey sys-
tem. In the first case, developers build their application on top of the
core Tulip graph data and algorithm classes. In the second case, end
users can use the Tulip visualization front-end to interactively import,
navigate, edit, lay out, and render graphs in a variety of ways. The
functionality of the Tulip front-end, although not covering all the func-
tions of the core library, is rich and customizable enough to allow one to
use this application as a full-fledged viewer for complex graphs in real
applications. Similar to ParaView and MayaVi, the Tulip front-end can
be customized via a plug-in mechanism to load additional functionality
developed on top of the core libraries.

Gephi
Type: Library and turnkey system

Availability: Open source (written in C++)



572 Appendix: Visualization Software

Address: http://gephi.org/

Description: Gephi is a framework for the visual analysis of medium to large graphs.
In terms of features and utilization mode, Gephi is very similar to Tulip.
However, Gephi targets a slightly different user group, and poses the
focus more on ease of learn and use than on computational scalability,
fine-grained APIs, and algorithm customizability. As such, Gephi offers
more plug-ins for importing both static and dynamic graphs from a
variety of file formats and live data sources and widgets for interactive
graph exploration. However, Tulip offers more research-grade graph
layout and analysis algorithms. Also, Tulip is scalable to graphs larger
than the ones that Gephi can handle at interactive frame rates.

Utilization: Gephi can be used either as a set of Java class library or as a turnkey
system. In the first case, developers build their application on top of the
core Gephi APIs (graph, layout, attributes, statistics, import, export,
tools, filters, and generators). In the second case, end users can use
the Gephi visual front-end to interactively import, navigate, edit, lay
out, and render graphs in a variety of ways. The Gephi front-end is
very similar (albeit easier to learn but slightly less flexible) than its
counterpart in Tulip. The front-end can be directly used to generate
a wide palette of graph and network visualization and visual analytics
applications. Similar to ParaView, MayaVi, and Tulip, Gephi can be
customized via a plug-in mechanism to load additional functionality
developed on top of its core APIs.

ManyEyes
Type: Web-based front-end

Availability: Available online as a web application

Address: http://www-958.ibm.com/

Description: ManyEyes is a web front-end for a set of information visualization tech-
niques for interactive exploration of moderately-sized information visu-
alization datasets [Viegas et al. 07]. Provided visualization metaphors
include treemaps, node-link graph and tree layouts, bar and line charts,
scatter plots, timelines, tag clouds, and data-annotated geographical
maps. Each visualization offers a few customization options, such as
parameterizing the size, color, annotation, and shape of elements in a
node-link layout or treemap; or specifying the columns of a table used
to create a 2D scatter plot or bar chart. Customization options can be
either explicitly specified by the user, or linked to reflect the value of a
data attribute. The created visualizations are displayed online, and can
be explored by means of a standard web browser. Interaction features,
apart from configuring the visualization parameters, cover interactive



A.5. Information Visualization Software 573

zooming, panning, and brushing to reveal data values. The provided
visualizations are kept on purpose simpler than the equivalent ones of-
fered by toolkits such as Tulip or Prefuse. However, their built-in default
values and presets make them suitable for visualizing a wide range of
datasets. Also, the data model is kept very simple: All datasets are ba-
sically text documents or two-dimensional data tables. While this offers
arguably less freedom to model complex relational datasets, it allows for
a very short, easy-to-learn, and error-tolerant path from generating the
datasets to creating the actual visualizations.

Utilization: In contrast to most other toolkits, that run as local applications on the
user’s machine, ManyEyes offers a web-based model: Users format their
datasets in a simple, typically text-based tabular model, and upload the
resulting data file to the ManyEyes site. Next, visualizations can be cre-
ated online from the uploaded dataset, both by the user who uploaded
data, but also by other users. This model allows for an easy sharing of
datasets, constructed visualizations, and insights generated from these
visualizations—hence the application’s name. The main advantage of
this model is the ease by which any user can create a (simple) visual-
ization from tabular data, with zero software installation requirements,
and with all the software development and maintenance effort located at
the site’s provider. Disadvantages involve the need to format the data
in the template demanded by ManyEyes; having to share potentially
confidential data; and the dependence of a third-party service “in the
cloud.”

Treemap

Type: Turnkey system

Availability: Open source for nonprofit uses (written in Java)

Address: http://www.cs.umd.edu/hcil/treemap/

Description: Treemap is a customizable turnkey system for the visualization of large
multivariate datasets using the treemap layout. Treemap implements
several layout algorithms (slice and dice, squarified, and strip) and al-
lows one to parameterize several elements of the mapping process, such
as size, color, borders, and labels of the treemap nodes by the data
attributes of the underlying tree. Several interactive navigation and fil-
tering mechanisms support a wide range of structure and attribute-based
user queries. Treemap also allows one to construct tree hierarchies from
data dynamically using a mechanism called flexible hierarchies. Given
a set of multivariate data points, trees can be built level-by-level by
successively grouping the points by different user-defined criteria on the
data attributes.



574 Appendix: Visualization Software

Utilization: Treemap comes as a turnkey system that can be customized by means of
its user interface. Treemap accepts many data formats as input. Also,
Treemap can be configured to monitor “live” data that changes dynam-
ically in time. Its many options can be saved as presets, called feature
sets, which allows relatively easy customization without the need for
programming. All in all, Treemap is quite easy to use as a customizable
turnkey system, but an important limitation is that it cannot be used
as a library via an API, e.g., for developing third-party applications.

XmdvTool
Type: Turnkey system

Availability: Open source (written in C/C++)

Address: http://davis.wpi.edu/xmdv/

Description: XmdvTool is a general-purpose visualization tool for the interactive
exploration of multivariate datasets. As such, XmdvTool implements
several visualization methods: scatter plots, star glyphs, parallel coor-
dinates, and dimensional stacking. These visualization methods come
in a “flat” and a hierarchical variant. The flat variant visualizes all
data points separately. The hierarchical variant first groups the data
points in a tree, based on some similarity metric defined on the data at-
tributes. Next, tree nodes, which represent data clusters, are visualized
using color and shading to map different cluster attributes. XmdvTool
is implemented in C++ using OpenGL for the graphics and Tcl/Tk for
the user interface functionality.

Utilization: XmdvTool comes as a turnkey system that can be directly used to vi-
sualize multivariate data coming in a number of different formats. The
user interface is relatively easy to learn. A strong feature of Xmdv-
Tool is the provision of many interaction mechanisms that allow several
types of brushing in screen, data, and structure spaces; zooming and
panning; display distortion techniques; and masking and reordering of
the axes (dimensions). All these mechanisms make XmdvTool a ver-
satile tool that can be used relatively easily to get a first look into a
given multivariate dataset. However, just as Treemap, the functional-
ity of XmdvTool is not available as an API or library, which makes its
applicability limited in some contexts.


